Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/19668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLoren, Niklas-
dc.contributor.authorHagman, Joel-
dc.contributor.authorJonasson, Jenny K.-
dc.contributor.authorDeschout, Hendrik-
dc.contributor.authorBernin, Diana-
dc.contributor.authorCella-Zanacchi, Francesca-
dc.contributor.authorDiaspro, Alberto-
dc.contributor.authorMcNally, James G.-
dc.contributor.authorAMELOOT, Marcel-
dc.contributor.authorSMISDOM, Nick-
dc.contributor.authorNyden, Magnus-
dc.contributor.authorHermansson, Anne-Marie-
dc.contributor.authorRudemo, Mats-
dc.contributor.authorBraeckmans, Kevin-
dc.date.accessioned2015-10-06T10:24:40Z-
dc.date.available2015-10-06T10:24:40Z-
dc.date.issued2015-
dc.identifier.citationQUARTERLY REVIEWS OF BIOPHYSICS, 48 (3), p. 323-387-
dc.identifier.issn0033-5835-
dc.identifier.urihttp://hdl.handle.net/1942/19668-
dc.description.abstractFluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.-
dc.description.sponsorshipThis project is a part of the VINN Excellence Centre SuMo Biomaterials (Supermolecular Biomaterials - Structure dynamics and properties). The financial support from the Centre is gratefully acknowledged by Niklas Loren, Anne-Marie Hermansson, Joel Hagman, Diana Bernin and Magnus Nyden. Magnus Nyden also acknowledges the financial support of the University of South Australia. Jenny Jonasson and Mats Rudemo were supported by the Swedish Foundation for Strategic Research (SSF) through the Gothenburg Mathematical Modelling Center (GMMC) and by the Swedish Research Council through the Gothenburg Stochastic Centre. Hendrik Deschout is a doctoral fellow of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT), Belgium. Financial support by the Ghent University Special Research Fund (Multidisciplinary Research Partnership NB-Photonics) and the Fund for Scientific Research Flanders are acknowledged with gratitude by Kevin Braeckmans. Nick Smisdom was supported by a Post-doctoral scholarship at the Research Foundation -Flanders (FWO-Vlaanderen) and the Interreg Euregio Meuse-Rhine IV-A consortium BioMiMedics (www.biomimedics.org; 2011-2014), which is co-financed by the European Union, local governments, research institutes and SMEs. Marcel Ameloot gratefully acknowledges the support received from the Research Council of the University of Hasselt, IAP P6/27 Functional Supramolecular Systems (BELSPO) and the research community 'Scanning and Wide Field Microscopy of (Bio)-organic Systems' (Fonds voor Wetenschappelijk Onderzoek Vlaanderen). James McNally is supported by the Helmholtz Zentrum Berlin.-
dc.language.isoen-
dc.publisherCAMBRIDGE UNIV PRESS-
dc.rights© Cambridge University Press 2015-
dc.titleFluorescence recovery after photobleaching in material and life sciences: putting theory into practice-
dc.typeJournal Contribution-
dc.identifier.epage387-
dc.identifier.issue3-
dc.identifier.spage323-
dc.identifier.volume48-
local.format.pages65-
local.bibliographicCitation.jcatA1-
dc.description.notes[Loren, Niklas; Hagman, Joel; Hermansson, Anne-Marie] SP Food & Biosci, SE-40229 Gothenburg, Sweden. [Jonasson, Jenny K.; Rudemo, Mats] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden. [Deschout, Hendrik; Braeckmans, Kevin] Univ Ghent, Lab Gen Biochem & Phys Pharm, Biophoton Imaging Grp, B-9000 Ghent, Belgium. [Deschout, Hendrik; Braeckmans, Kevin] Univ Ghent, Ctr Nano & Biophoton, B-9000 Ghent, Belgium. [Bernin, Diana; Hermansson, Anne-Marie] Chalmers, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden. [Cella-Zanacchi, Francesca; Diaspro, Alberto] Ist Italiano Tecnol, Nanophys Dept, I-16163 Genoa, Italy. [McNally, James G.] Helmholtz Ctr Berlin, Inst Soft Matter & Funct Mat, D-12489 Berlin, Germany. [Ameloot, Marcel; Smisdom, Nick] Hasselt Univ, B-3500 Hasselt, Belgium. [Smisdom, Nick] Flemish Inst Technol Res, Environm Risk & Hlth Unit, B-2400 Mol, Belgium. [Nyden, Magnus] Univ S Australia, Ian Wark Res Inst, Adelaide, SA 5001, Australia.-
local.publisher.placeNEW YORK-
local.type.refereedRefereed-
local.type.specifiedReview-
dc.identifier.doi10.1017/S0033583515000013-
dc.identifier.isi000360580400002-
item.contributorLoren, Niklas-
item.contributorHagman, Joel-
item.contributorJonasson, Jenny K.-
item.contributorDeschout, Hendrik-
item.contributorBernin, Diana-
item.contributorCella-Zanacchi, Francesca-
item.contributorDiaspro, Alberto-
item.contributorMcNally, James G.-
item.contributorAMELOOT, Marcel-
item.contributorSMISDOM, Nick-
item.contributorNyden, Magnus-
item.contributorHermansson, Anne-Marie-
item.contributorRudemo, Mats-
item.contributorBraeckmans, Kevin-
item.fullcitationLoren, Niklas; Hagman, Joel; Jonasson, Jenny K.; Deschout, Hendrik; Bernin, Diana; Cella-Zanacchi, Francesca; Diaspro, Alberto; McNally, James G.; AMELOOT, Marcel; SMISDOM, Nick; Nyden, Magnus; Hermansson, Anne-Marie; Rudemo, Mats & Braeckmans, Kevin (2015) Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. In: QUARTERLY REVIEWS OF BIOPHYSICS, 48 (3), p. 323-387.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
item.validationecoom 2016-
crisitem.journal.issn0033-5835-
crisitem.journal.eissn1469-8994-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
FRAP review 2015.pdf
  Restricted Access
1.59 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

48
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

102
checked on May 1, 2024

Page view(s)

64
checked on Jun 17, 2022

Download(s)

46
checked on Jun 17, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.