Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1968
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShen, Shuyi Y.-
dc.contributor.authorBEUNCKENS, Caroline-
dc.contributor.authorMallinckrodt, Craig-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2007-11-09T15:16:46Z-
dc.date.available2007-11-09T15:16:46Z-
dc.date.issued2006-
dc.identifier.citationJOURNAL OF BIOPHARMACEUTICAL STATISTICS, 16(3). p. 365-384-
dc.identifier.issn1054-3406-
dc.identifier.urihttp://hdl.handle.net/1942/1968-
dc.description.abstractIn the analyses of incomplete longitudinal clinical trial data, there has been a shift, away from simple ad hoc methods that are valid only if the data are missing completely at random (MCAR), to more principled (likelihood-based or Bayesian) ignorable analyses, which are valid under the less restrictive missing at random ( MAR) assumption. The availability of the necessary standard statistical software allows for such analyses in practice. Although the possibility of data missing not at random (MNAR) cannot be ruled out, it is argued that analyses valid under MNAR are not well suited for the primary analysis in clinical trials. Therefore, rather than either forgetting about or blindly shifting to an MNAR framework, the optimal place for MNAR analyses is within a sensitivity analysis context. Such analyses can be used, for example, to assess how sensitive results from an ignorable analysis are to possible departures from MAR and how much results are affected by influential observations. In this article, we apply the local influence sensitivity tool (Verbeke et al., 2001) to a longitudinal depression trial, thereby applying it to continuous outcomes from clinical trials.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.subject.otherincomplete clinical trial data; local influence; selection models; sensitivity analysis-
dc.subject.otherincomplete clinical trial data; local influence; selection models; sensitivity analysis-
dc.titleA local influence sensitivity analysis for incomplete longitudinal depression data-
dc.typeJournal Contribution-
dc.identifier.epage384-
dc.identifier.issue3-
dc.identifier.spage365-
dc.identifier.volume16-
local.format.pages20-
local.bibliographicCitation.jcatA1-
dc.description.notesHasselt Univ, Ctr Stat, Hasselt, Belgium. Eli Lilly & Co, Indianapolis, IN 46285 USA.Beunckens, C, Hasselt Univ, Ctr Stat, Hasselt, Belgium.caroline.beunckens@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1080/10543400600609510-
dc.identifier.isi000237604900012-
item.fulltextWith Fulltext-
item.contributorShen, Shuyi Y.-
item.contributorBEUNCKENS, Caroline-
item.contributorMallinckrodt, Craig-
item.contributorMOLENBERGHS, Geert-
item.fullcitationShen, Shuyi Y.; BEUNCKENS, Caroline; Mallinckrodt, Craig & MOLENBERGHS, Geert (2006) A local influence sensitivity analysis for incomplete longitudinal depression data. In: JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 16(3). p. 365-384.-
item.accessRightsRestricted Access-
item.validationecoom 2007-
crisitem.journal.issn1054-3406-
crisitem.journal.eissn1520-5711-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
shen2006.pdf
  Restricted Access
Published version809.91 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.