Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1986
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOLLAERTS, Kaatje-
dc.contributor.authorEilers, PHC-
dc.contributor.authorAERTS, Marc-
dc.date.accessioned2007-11-09T15:24:08Z-
dc.date.available2007-11-09T15:24:08Z-
dc.date.issued2006-
dc.identifier.citationSTATISTICAL MODELLING, 6(3). p. 189-207-
dc.identifier.issn1471-082X-
dc.identifier.urihttp://hdl.handle.net/1942/1986-
dc.description.abstractQuantile regression is an alternative to OLS regression. In quantile regression, the sum of absolute deviations or the L-1-norm is minimized, whereas the sum of squared deviations or the L-2-norm is minimized in OLS regression. Quantile regression has the advantage over OLS-regression of being more robust to outlying observations. Furthermore, quantile regression provides information complementing the information provided by OLS-regression. In this study, a non-parametric approach to quantile regression is presented, which constrains the estimated-quanti le function to be monotone increasing. In particular, P-splines with an additional asymmetric penalty enforcing monotonicity are used within an L-1-framework. This can be translated into a linear programming problem, which will be solved using an interior point algorithm. As an illustration, the presented approach will be applied to estimate quantile growth curves and quantile antibody levels as a function of age.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSAGE PUBLICATIONS LTD-
dc.subject.othergrowth curves; interior point; L-1-norm; monotonicity; P-splines; quantile regression-
dc.titleQuantile regression with monotonicity restrictions using P-splines and the L-1-norm-
dc.typeJournal Contribution-
dc.identifier.epage207-
dc.identifier.issue3-
dc.identifier.spage189-
dc.identifier.volume6-
local.format.pages19-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Hasselt, Ctr Stat, B-3590 Diepenbeek, Belgium.Bollaerts, K, Univ Hasselt, Ctr Stat, Agoralaan 1 Gebouw D, B-3590 Diepenbeek, Belgium.kaatje.bollaerts@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1191/1471082X06st118oa-
dc.identifier.isi000240879500001-
item.validationecoom 2007-
item.contributorBOLLAERTS, Kaatje-
item.contributorEilers, PHC-
item.contributorAERTS, Marc-
item.fullcitationBOLLAERTS, Kaatje; Eilers, PHC & AERTS, Marc (2006) Quantile regression with monotonicity restrictions using P-splines and the L-1-norm. In: STATISTICAL MODELLING, 6(3). p. 189-207.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn1471-082X-
crisitem.journal.eissn1477-0342-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.