Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2020
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOOMS, Alfons-
dc.contributor.authorQIU, Weisheng-
dc.date.accessioned2007-11-09T22:46:18Z-
dc.date.available2007-11-09T22:46:18Z-
dc.date.issued2005-
dc.identifier.citationALGEBRA COLLOQUIUM, 12(4). p. 635-644-
dc.identifier.issn1005-3867-
dc.identifier.urihttp://hdl.handle.net/1942/2020-
dc.description.abstractIn this paper, we prove that a binary sequence is perfect (resp., quasi-perfect) if and only if its support set for any finite group (not necessarily cyclic) is a Hadamard difference set of type I (resp., type II); and we prove that the kernel of any nonzero linear functional (or the image of any linear transformation A with dim(Ker A) = 1) on the linear space GF(2(m)) over the field GF(2(m)) (excluding 0) is a cyclic Hadamard difference set of type II using Gaussian sums; and we prove that the multiplier group of the above difference set is equal to the Galois group Gal(GF(2(m))/GF(2)); and we mention the relationship between the Hadamard transform and the irreducible complex characters.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD-
dc.subject.otherquasi-perfect sequence; difference set; character; Hadamard transform; multiplier group-
dc.titleQuasi-perfect sequences and Hadamard difference sets-
dc.typeJournal Contribution-
dc.identifier.epage644-
dc.identifier.issue4-
dc.identifier.spage635-
dc.identifier.volume12-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Limburg, Dept Math, B-3590 Diepenbeek, Belgium. Peking Univ, Dept Math, LMAM, Beijing 100871, Peoples R China.Ooms, AI, Univ Limburg, Dept Math, B-3590 Diepenbeek, Belgium.alfons.ooms@luc.ac.be qiuws@pku.edu.cn-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000233566600011-
dc.identifier.urlhttp://www.worldscinet.com/cgi-bin/details.cgi?id=jsname:ac&type=all-
item.validationecoom 2006-
item.contributorOOMS, Alfons-
item.contributorQIU, Weisheng-
item.fullcitationOOMS, Alfons & QIU, Weisheng (2005) Quasi-perfect sequences and Hadamard difference sets. In: ALGEBRA COLLOQUIUM, 12(4). p. 635-644.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn1005-3867-
crisitem.journal.eissn0219-1733-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.