Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2038
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSHKEDY, Ziv-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorVan Craenendonck, Hansfried-
dc.contributor.authorBIJNENS, Luc-
dc.contributor.authorSteckler, Thomas-
dc.date.accessioned2007-11-11T09:11:22Z-
dc.date.available2007-11-11T09:11:22Z-
dc.date.issued2005-
dc.identifier.citationJOURNAL OF BIOPHARMACEUTICAL STATISTICS, 15(2). p. 225-239-
dc.identifier.issn1054-3406-
dc.identifier.urihttp://hdl.handle.net/1942/2038-
dc.description.abstractThe differential reinforcement of a low-rate 72-seconds schedule (DRL-72) is a standard behavioral test procedure for screening a potential antidepressant compound. The data analyzed in the article are binary outcomes from a crossover design for such an experiment. Recently, Shkedy et al. ( 2004) proposed to estimate the treatments effect using either generalized linear mixed models (GLMM) or generalized estimating equations ( GEE) for clustered binary data. The models proposed by Shkedy et al. ( 2004) assumed the number of responses at each binomial observation is fixed. This might be an unrealistic assumption for a behavioral experiment such as the DRL-72 because the number of responses ( the number of trials in each binomial observation) is expected to be influenced by the administered dose level. In this article, we extend the model proposed by Shkedy et al. ( 2004) and propose a hierarchical Bayesian binomial-Poisson model, which assumes the number of responses to be a Poisson random variable. The results obtained from the GLMM and the binomial-Poisson models are comparable. However, the latter model allows estimating the correlation between the number of successes and number of trials.-
dc.description.sponsorshipThe first two authors gratefully acknowledge the financial support from the IAP research network nr. P5/24 of the Belgian Government (Belgian Science Policy).-
dc.languageEnglish-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.rights© Taylor & Francis, Inc-
dc.subject.otherbinomial-Poisson model; correlated binary data; cross-over design; generalized estimation equation; generalized linear mixed models; hierarchical Bayesian Models; odds ratio-
dc.subject.otherBinomial-Poisson model; correlated binary data; cross-over design; generalized estimation equation; generalized linear mixed models; hierarchical Bayesian Models; odds ratio-
dc.titleA hierarchical binomial-poisson model for the analysis of a crossover design for correlated binary data when the number of trials is dose-dependent-
dc.typeJournal Contribution-
dc.identifier.epage239-
dc.identifier.issue2-
dc.identifier.spage225-
dc.identifier.volume15-
local.format.pages15-
local.bibliographicCitation.jcatA1-
dc.description.notesLimburgs Univ Ctr, Ctr Stat Biostat, B-3590 Diepenbeek, Belgium. Janssen Pharmaceut, Johnson & Johnson Pharmaceut Res & Dev, B-2340 Beerse, Belgium.Shkedy, Z, Limburgs Univ Ctr, Ctr Stat Biostat, Univ Campus, B-3590 Diepenbeek, Belgium.ziv.shkedy@luc.ac.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1081/BIP-200049825-
dc.identifier.isi000236232300004-
item.fulltextWith Fulltext-
item.contributorSHKEDY, Ziv-
item.contributorMOLENBERGHS, Geert-
item.contributorVan Craenendonck, Hansfried-
item.contributorBIJNENS, Luc-
item.contributorSteckler, Thomas-
item.fullcitationSHKEDY, Ziv; MOLENBERGHS, Geert; Van Craenendonck, Hansfried; BIJNENS, Luc & Steckler, Thomas (2005) A hierarchical binomial-poisson model for the analysis of a crossover design for correlated binary data when the number of trials is dose-dependent. In: JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 15(2). p. 225-239.-
item.accessRightsRestricted Access-
item.validationecoom 2007-
crisitem.journal.issn1054-3406-
crisitem.journal.eissn1520-5711-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
shkedy2005.pdf
  Restricted Access
Published version265.44 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.