Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2081
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBONCKAERT, Patrick-
dc.contributor.authorFontich, E-
dc.date.accessioned2007-11-11T10:25:32Z-
dc.date.available2007-11-11T10:25:32Z-
dc.date.issued2005-
dc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS, 214(1). p. 128-155-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/2081-
dc.description.abstractWe consider one parameter families of vector fields depending on a parameter E such that for epsilon = 0 the system becomes a rotation of R-2 x R-n around {0} x R-n and such that for epsilon > 0 the origin is a hyperbolic singular point of saddle type with, say, attraction in the rotation plane and expansion in the complementary space. We look for a local subcenter invariant manifold extending the stable manifolds to epsilon = 0. Afterwards the analogous case for maps is considered. In contrast with the previous case the arithmetic properties of the angle of rotation play an important role. (c) 2005 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subject.otherperturbations of rotations; subcenter invariant manifolds; bifurcations-
dc.titleInvariant manifolds of dynamical systems close to a rotation: Transverse to the rotation axis-
dc.typeJournal Contribution-
dc.identifier.epage155-
dc.identifier.issue1-
dc.identifier.spage128-
dc.identifier.volume214-
local.format.pages28-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain. Limburgs Univ Centrum, B-3590 Diepenbeek, Belgium.Fontich, E, Univ Barcelona, Dept Matemat Aplicada & Anal, Gran Via Corts Catalanes,585, E-08007 Barcelona, Spain.fontich@mat.ub.es-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.jde.2005.02.012-
dc.identifier.isi000229861300005-
item.contributorBONCKAERT, Patrick-
item.contributorFontich, E-
item.fullcitationBONCKAERT, Patrick & Fontich, E (2005) Invariant manifolds of dynamical systems close to a rotation: Transverse to the rotation axis. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 214(1). p. 128-155.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.validationecoom 2006-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.