Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/20860
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBRUCKERS, Liesbeth-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorDrinkenburg, P.-
dc.contributor.authorGEYS, Helena-
dc.date.accessioned2016-03-31T14:49:12Z-
dc.date.available2016-03-31T14:49:12Z-
dc.date.issued2015-
dc.identifier.citationJournal of Biopharmaceutical Statistics, 26 (4), 725-741-
dc.identifier.issn1054-3406-
dc.identifier.urihttp://hdl.handle.net/1942/20860-
dc.description.abstractLatent growth modeling approaches, such as growth mixture models, are used to identify meaningful groups or classes of individuals in a larger heterogeneous population. But when applied to multivariate repeated measures computational problems are likely, due to the high dimension of the joint distribution of the random effects in these mixed-effects models. This paper proposes a cluster algorithm for multivariate repeated data, using pseudo-likelihood and ideas based on k-means clustering, to reveal homogenous subgroups. The algorithm was demonstrated on an EEG data set quantifying the effect of psychoactive compounds on the brain activity in rats.-
dc.language.isoen-
dc.subject.othercluster analysis; EEG data; joint models; multivariate longitudinal data-
dc.titleA clustering algorithm for multivariate longitudinal data-
dc.typeJournal Contribution-
dc.identifier.epage741-
dc.identifier.issue4-
dc.identifier.spage725-
dc.identifier.volume26-
local.format.pages38-
local.bibliographicCitation.jcatA1-
dc.description.notesBruckers, L (reprint author), Univ Hasselt, I BioStat, Martelarenlaan 42, B-3500 Hasselt, Diepen Beek, Belgium. liesbeth.bruckers@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/10543406.2015.1052476-
dc.identifier.isi000377095800010-
item.validationecoom 2017-
item.contributorBRUCKERS, Liesbeth-
item.contributorMOLENBERGHS, Geert-
item.contributorDrinkenburg, P.-
item.contributorGEYS, Helena-
item.fullcitationBRUCKERS, Liesbeth; MOLENBERGHS, Geert; Drinkenburg, P. & GEYS, Helena (2015) A clustering algorithm for multivariate longitudinal data. In: Journal of Biopharmaceutical Statistics, 26 (4), 725-741.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1054-3406-
crisitem.journal.eissn1520-5711-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
467.pdfPeer-reviewed author version17.05 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.