Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/20861
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIVANOVA, Anna-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorVERBEKE, Geert-
dc.date.accessioned2016-03-31T14:50:38Z-
dc.date.available2016-03-31T14:50:38Z-
dc.date.issued2017-
dc.identifier.citationStatistical methods in medical research, 26(6), p. 2758-2779.-
dc.identifier.issn0962-2802-
dc.identifier.urihttp://hdl.handle.net/1942/20861-
dc.description.abstractIn longitudinal studies, continuous, binary, categorical, and survival outcomes are often jointly collected, possibly with some observations missing. However, when it comes to modeling responses, the ordinal ones have received less attention in the literature. In a longitudinal or hierarchical context, the univariate proportional odds mixed model (POMM) can be regarded as an instance of the generalized linear mixed model (GLMM). When the response of the joint multivariate model encompass ordinal responses, the complexity further increases. An additional problem of model fitting is the size of the collected data. Pseudo-likelihood based methods for pairwise fitting, for partitioned samples and, as introduced in this paper, pairwise fitting within partitioned samples allow joint modeling of even larger numbers of responses. We show that that pseudo-likelihood methodology allows for highly efficient and fast inferences in high-dimensional large datasets.-
dc.description.sponsorshipFinancial support from the IAP research network #P7/06 of the Belgian Government (Belgian Science Policy) and the Flemish Supercomputer Project are gratefully acknowledged. We are also grateful to Mr Kris Bogaerts of I-Biostat for his expert advice.-
dc.language.isoen-
dc.rights© The Author(s) 2015.-
dc.subject.othergeneralized linear mixed model; proportional odds mixed model; joint modeling; pseudo-likelihood; pairwise fitting; sample partition; asymptotic relative efficiency; reduced computation time-
dc.titleFast and highly efficient pseudo-likelihood methodology for large and complex ordinal data-
dc.typeJournal Contribution-
dc.identifier.epage2779-
dc.identifier.issue6-
dc.identifier.spage2758-
dc.identifier.volume26-
local.format.pages27-
local.bibliographicCitation.jcatA1-
dc.description.notesCorresponding author: Anna Ivanova, I-BioStat, KU Leuven, University of Leuven, Leuven, Belgium. Email: anna.ivanova@lstat.kuleuven.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.identifier.vabbc:vabb:394177-
local.classIncludeIn-ExcludeFrom-List/ExcludeFromFRIS-
local.type.programmeVSC-
dc.identifier.doi10.1177/0962280215608213-
dc.identifier.isi000418307900018-
dc.identifier.urlhttps://lirias.kuleuven.be/bitstream/123456789/515312/3/470.pdf-
item.contributorIVANOVA, Anna-
item.contributorMOLENBERGHS, Geert-
item.contributorVERBEKE, Geert-
item.fullcitationIVANOVA, Anna; MOLENBERGHS, Geert & VERBEKE, Geert (2017) Fast and highly efficient pseudo-likelihood methodology for large and complex ordinal data. In: Statistical methods in medical research, 26(6), p. 2758-2779..-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
item.validationecoom 2019-
item.validationvabb 2017-
crisitem.journal.issn0962-2802-
crisitem.journal.eissn1477-0334-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ivanova2015.pdf
  Restricted Access
Published version233.25 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.