Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/20868
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRizzato, F.B.-
dc.contributor.authorLeandro, R.A.-
dc.contributor.authorDemétrio, C.G.B.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2016-03-31T15:07:08Z-
dc.date.available2016-03-31T15:07:08Z-
dc.date.issued2016-
dc.identifier.citationJournal of applied statistics, 43(11), p. 2085-2109-
dc.identifier.issn0266-4763-
dc.identifier.urihttp://hdl.handle.net/1942/20868-
dc.description.abstractIn this paper, we consider a model for repeated count data, with within-subject correlation and/or overdispersion. It extends both the generalized linear mixed model and the negative-binomial model. This model, proposed in a likelihood context [17,18] is placed in a Bayesian inferential framework. An important contribution takes the form of Bayesian model assessment based on pivotal quantities, rather than the often less adequate DIC. By means of a real biological data set, we also discuss some Bayesian model selection aspects, using a pivotal quantity proposed by Johnson [12].-
dc.description.sponsorshipFernanda Rizzato was partially supported by CNPq and CAPES (Brazilian Science Funding Agencies) and Clarice Demétrio by CNPq. Geert Molenberghs gratefully acknowledges support from the IAP Research Network P7/06 of the Belgian State (Belgian Science Policy).-
dc.language.isoen-
dc.rights© 2015 Taylor & Francis-
dc.subject.otherBayesian analysis; Bayesian model assessment; count data; generalized linear mixed model; over dispersion-
dc.titleA Bayesian approach to analyse overdispersed longitudinal count data-
dc.typeJournal Contribution-
dc.identifier.epage2109-
dc.identifier.issue11-
dc.identifier.spage2085-
dc.identifier.volume43-
local.format.pages25-
local.bibliographicCitation.jcatA1-
dc.description.notesRizzato, FB (reprint author), Univ Fed Parana, Stat, Curitiba, Parana, Brazil. fernandab@ufpr.br-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/02664763.2015.1126812-
dc.identifier.isi000382570500009-
item.validationecoom 2017-
item.contributorRizzato, F.B.-
item.contributorLeandro, R.A.-
item.contributorDemétrio, C.G.B.-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationRizzato, F.B.; Leandro, R.A.; Demétrio, C.G.B. & MOLENBERGHS, Geert (2016) A Bayesian approach to analyse overdispersed longitudinal count data. In: Journal of applied statistics, 43(11), p. 2085-2109.-
crisitem.journal.issn0266-4763-
crisitem.journal.eissn1360-0532-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
477.pdf
  Restricted Access
Published version2.65 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.