Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/20868
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rizzato, F.B. | - |
dc.contributor.author | Leandro, R.A. | - |
dc.contributor.author | Demétrio, C.G.B. | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.date.accessioned | 2016-03-31T15:07:08Z | - |
dc.date.available | 2016-03-31T15:07:08Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Journal of applied statistics, 43(11), p. 2085-2109 | - |
dc.identifier.issn | 0266-4763 | - |
dc.identifier.uri | http://hdl.handle.net/1942/20868 | - |
dc.description.abstract | In this paper, we consider a model for repeated count data, with within-subject correlation and/or overdispersion. It extends both the generalized linear mixed model and the negative-binomial model. This model, proposed in a likelihood context [17,18] is placed in a Bayesian inferential framework. An important contribution takes the form of Bayesian model assessment based on pivotal quantities, rather than the often less adequate DIC. By means of a real biological data set, we also discuss some Bayesian model selection aspects, using a pivotal quantity proposed by Johnson [12]. | - |
dc.description.sponsorship | Fernanda Rizzato was partially supported by CNPq and CAPES (Brazilian Science Funding Agencies) and Clarice Demétrio by CNPq. Geert Molenberghs gratefully acknowledges support from the IAP Research Network P7/06 of the Belgian State (Belgian Science Policy). | - |
dc.language.iso | en | - |
dc.rights | © 2015 Taylor & Francis | - |
dc.subject.other | Bayesian analysis; Bayesian model assessment; count data; generalized linear mixed model; over dispersion | - |
dc.title | A Bayesian approach to analyse overdispersed longitudinal count data | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 2109 | - |
dc.identifier.issue | 11 | - |
dc.identifier.spage | 2085 | - |
dc.identifier.volume | 43 | - |
local.format.pages | 25 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Rizzato, FB (reprint author), Univ Fed Parana, Stat, Curitiba, Parana, Brazil. fernandab@ufpr.br | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1080/02664763.2015.1126812 | - |
dc.identifier.isi | 000382570500009 | - |
item.validation | ecoom 2017 | - |
item.contributor | Rizzato, F.B. | - |
item.contributor | Leandro, R.A. | - |
item.contributor | Demétrio, C.G.B. | - |
item.contributor | MOLENBERGHS, Geert | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
item.fullcitation | Rizzato, F.B.; Leandro, R.A.; Demétrio, C.G.B. & MOLENBERGHS, Geert (2016) A Bayesian approach to analyse overdispersed longitudinal count data. In: Journal of applied statistics, 43(11), p. 2085-2109. | - |
crisitem.journal.issn | 0266-4763 | - |
crisitem.journal.eissn | 1360-0532 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
477.pdf Restricted Access | Published version | 2.65 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.