Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21269
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakroun, Imen-
dc.contributor.authorHABER, Tom-
dc.contributor.authorVander Aa, Tom-
dc.contributor.authorKOVAC, Thomas-
dc.date.accessioned2016-05-24T12:05:42Z-
dc.date.available2016-05-24T12:05:42Z-
dc.date.issued2016-
dc.identifier.citation2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), p. 119-126-
dc.identifier.isbn9781467387750-
dc.identifier.issn1066-6192-
dc.identifier.urihttp://hdl.handle.net/1942/21269-
dc.description.abstractUsing the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used because of the prohibitive cost. In this paper, we propose a comprehensive parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We also propose an insight of a GPU-based implementation of this algorithm.-
dc.language.isoen-
dc.publisherIEEE Computer Society-
dc.relation.ispartofseriesEuromicro International Conference-
dc.subject.othercollaborative filtering; machine learning; PGAS; probabilistic matrix factorization algorithm; multicore-
dc.titleExploring Parallel Implementations of the Bayesian Probabilistic Matrix Factorization-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate17-19 February 2016-
local.bibliographicCitation.conferencename24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)-
local.bibliographicCitation.conferenceplaceHeraklion-
dc.identifier.epage126-
dc.identifier.spage119-
local.bibliographicCitation.jcatC1-
dc.description.notesChakroun, I (reprint author), IMEC, ExaSci Life Lab, Leuven, Belgium.-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr24-
dc.identifier.doi10.1109/PDP.2016.48-
dc.identifier.isi000381810900015-
local.bibliographicCitation.btitle2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)-
item.fulltextNo Fulltext-
item.contributorChakroun, Imen-
item.contributorHABER, Tom-
item.contributorVander Aa, Tom-
item.contributorKOVAC, Thomas-
item.fullcitationChakroun, Imen; HABER, Tom; Vander Aa, Tom & KOVAC, Thomas (2016) Exploring Parallel Implementations of the Bayesian Probabilistic Matrix Factorization. In: 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), p. 119-126.-
item.accessRightsClosed Access-
item.validationecoom 2017-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.