Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/21376
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tang, Zhonghui | - |
dc.contributor.author | Luo, Oscar Junhong | - |
dc.contributor.author | Li, Xingwang | - |
dc.contributor.author | Zheng, Meizhen | - |
dc.contributor.author | Jufen Zhu, Jacqueline | - |
dc.contributor.author | SZALAJ, Przemek | - |
dc.contributor.author | Trzaskoma, Pawel | - |
dc.contributor.author | Magalska, Adriana | - |
dc.contributor.author | Wlodarczyk, Jakub | - |
dc.contributor.author | Ruszczycki, Blazej | - |
dc.contributor.author | Michalski, Paul | - |
dc.contributor.author | Piecuch, Emaly | - |
dc.contributor.author | Wang, Ping | - |
dc.contributor.author | Wang, Danjuan | - |
dc.contributor.author | Zhongyuan Tian, Simon | - |
dc.contributor.author | Penrad-Mobayed, May | - |
dc.contributor.author | Sachs, Laurent M. | - |
dc.contributor.author | Ruan, Xiaoan | - |
dc.contributor.author | We, Chia-Lin | - |
dc.contributor.author | Liu, Edison T. | - |
dc.contributor.author | Wilczynski, Grzegorz M. | - |
dc.contributor.author | Plewczynski, Dariusz | - |
dc.contributor.author | Li, Guoliang | - |
dc.contributor.author | Ruan, Yijun | - |
dc.date.accessioned | 2016-06-01T12:04:55Z | - |
dc.date.available | 2016-06-01T12:04:55Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | CELL, 163 (7), p. 1611-1627 | - |
dc.identifier.issn | 0092-8674 | - |
dc.identifier.uri | http://hdl.handle.net/1942/21376 | - |
dc.description.abstract | Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. | - |
dc.description.sponsorship | Y.R. is supported by the Director Innovation Fund of The Jackson Laboratory, NCI R01 CA186714, NHGRI R25HG007631, NIDDK U54DK107967 (4DN), and the Roux family as the Florine Roux Endowed Chair in Genomics and Computational Biology. X.L. is supported in part by China "111 project'' (B07041). Polish National Science Centre supports G.M.W. [UMO-2012/05/E/NZ4/02997]; D.P. and P.S. [2014/15/B/ST6/05082; UMO-2013/09/B/NZ2/00121]; and J.W. [DEC-2012/06/M/NZ3/00163]. D.P. and P.S. are also supported by National Leading Research Centre in Bialystok and the European Union under the European Social Fund. The authors thank C.Z. Zhang for initial DNA-FISH, Agnieszka Walczak and Katarzyna Krawczyk for FISH discussion, Rafael Casellas, Michael Stitzel, and Duygu Ucar for manuscript discussion, and Gosia Popiel for help on preparing Figure S7. Some of the genome sequences described in this research were derived from a HeLa cell line. Henrietta Lacks, and the HeLa cell line that was established from her tumor cells without her knowledge or consent in 1951, have made significant contributions to scientific progress and advances in human health. We are grateful to Henrietta Lacks, now deceased, and to her surviving family members for their contributions to biomedical research. The request to use HeLa data for this research was approved by the NIH Director based on the recommendations of the Advisory Committee to the Director and the evaluation by its HeLa Genome Data Access Working Group (http://acd.od.nih.gov/hlgda.htm). The HeLa genomic datasets used for analysis described in this manuscript were obtained from the database of Genotypes and Phenotypes (dbGaP) through dbGaP: phs000640. | - |
dc.language.iso | en | - |
dc.rights | © 2015 Elsevier Inc. Published by Elsevier Inc. All rights reserved. | - |
dc.title | CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 1627 | - |
dc.identifier.issue | 7 | - |
dc.identifier.spage | 1611 | - |
dc.identifier.volume | 163 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.relation.references | Bickmore, W.A. (2013). The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67–84. Boyle, S., Rodesch, M.J., Halvensleben, H.A., Jeddeloh, J.A., and Bickmore, W.A. (2011). Fluorescence in situ hybridization with high-complexity repeat- free oligonucleotide probes generated by massively parallel synthesis. Chro- mosome Res. 19, 901–909. Cremer, M., Grasser, F., Lanctot, C., Muller, S., Neusser, M., Zinner, R., Solo- vei, I., and Cremer, T. (2008). Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol. 463, 205–239. Cullen, K.E., Kladde,M.P., and Seyfred,M.A. (1993). Interaction between tran- scription regulatory regions of prolactin chromatin. Science 261, 203–206. Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380. Dowen, J.M., Fan, Z.P., Hnisz, D., Ren, G., Abraham, B.J., Zhang, L.N., Wein- traub, A.S., Schuijers, J., Lee, T.I., Zhao, K., and Young, R.A. (2014). Control of cell identity genes occurs in insulated neighborhoods in mammalian chromo- somes. Cell 159, 374–387. ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74. Fullwood,M.J., Liu,M.H., Pan, Y.F., Liu, J., Xu, H.,Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A.,Mei, P.H., et al. (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64. Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I.,Wu, H., Zhai, Y., Tang, Y., et al. (2015). CRISPR inversion of CTCF sites alters genome topol- ogy and enhancer/promoter function. Cell 162, 900–910. Hall,M.H.,Magalska, A.,Malinowska,M., Ruszczycki, B., Czaban, I., Patel, S., Ambro_ zek-Latecka, M., Zo1ocinska, E., Broszkiewicz, H., Parobczak, K., et al. (2015). Localization and regulation of PML bodies in the adult mouse brain. Brain Struct. Funct. http://dx.doi.org/10.1007/s00429-015-1053-4. He, Q., Johnston, J., and Zeitlinger, J. (2015). ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395–401. Horakova, A.H., Moseley, S.C., McLaughlin, C.R., Tremblay, D.C., and Chad- wick, B.P. (2012). The macrosatellite DXZ4 mediates CTCF-dependent long- range intrachromosomal interactions on the human inactive X chromosome. Hum. Mol. Genet. 21, 4367–4377. Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F., and Chen, L. (2012). Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98. Leung, D., Jung, I., Rajagopal, N., Schmitt, A., Selvaraj, S., Lee, A.Y., Yen, C.A., Lin, S., Lin, Y., Qiu, Y., et al. (2015). Integrative analysis of haplotype- resolved epigenomes across human tissues. Nature 518, 350–354. Li, G., Fullwood, M.J., Xu, H., Mulawadi, F.H., Velkov, S., Vega, V., Ariyaratne, P.N., Mohamed, Y.B., Ooi, H.S., Tennakoon, C., et al. (2010). ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 11, R22. Li, G., Ruan, X., Auerbach, R.K., Sandhu, K.S., Zheng, M., Wang, P., Poh, H.M., Goh, Y., Lim, J., Zhang, J., et al. (2012). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98. Liang, Z., Zickler, D., Prentiss, M., Chang, F.S., Witz, G., Maeshima, K., and Kleckner, N. (2015). Chromosomes progress tometaphase inmultiple discrete steps via global compaction/expansion cycles. Cell 161, 1124–1137. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293. McDaniell, R., Lee, B.K., Song, L., Liu, Z., Boyle, A.P., Erdos, M.R., Scott, L.J., Morken,M.A., Kucera, K.S., Battenhouse, A., et al. (2010). Heritable individual- specific and allele-specific chromatin signatures in humans. Science 328, 235–239. Montgomery, S.B., Sammeth, M., Gutierrez-Arcelus, M., Lach, R.P., Ingle, C., Nisbett, J., Guigo, R., and Dermitzakis, E.T. (2010). Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777. Morgan, G.T. (2002). Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Res. 10, 177–200. Nativio, R., Sparago, A., Ito, Y.,Weksberg, R., Riccio, A., andMurrell, A. (2011). Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Hum. Mol. Genet. 20, 1363–1374. Ong, C.T., and Corces, V.G. (2014). CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234–246. Penrad-Mobayed, M., Kanhoush, R., and Perrin, C. (2010). Tips and tricks for preparing lampbrush chromosome spreads from Xenopus tropicalis oocytes. Methods 51, 37–44. Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Rob- inson, J.T., Sanborn, A.L.,Machol, I., Omer, A.D., Lander, E.S., and Aiden, E.L. (2014). A 3D map of the human genome at kilobase resolution reveals princi- ples of chromatin looping. Cell 159, 1665–1680. Rhee, H.S., and Pugh, B.F. (2011). Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419. Rozowsky, J., Abyzov, A.,Wang, J., Alves, P., Raha, D., Harmanci, A., Leng, J., Bjornson, R., Kong, Y., Kitabayashi, N., et al. (2011). AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol. Syst. Biol. 7, 522. 16 Cell 163, 1–17, December 17, 2015 ª2015 Elsevier Inc. CELL 8603Selvaraj, S., R Dixon, J., Bansal, V., and Ren, B. (2013).Whole-genome haplo- type reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31, 1111–1118. Sims, R.J., 3rd, Mandal, S.S., and Reinberg, D. (2004). Recent highlights of RNA-polymerase-II-mediated transcription. Curr. Opin. Cell Biol. 16, 263–271. Stranger, B.E., Nica, A.C., Forrest, M.S., Dimas, A., Bird, C.P., Beazley, C., Ingle, C.E., Dunning, M., Flicek, P., Koller, D., et al. (2007). Population geno- mics of human gene expression. Nat. Genet. 39, 1217–1224. Verlaan, D.J., Berlivet, S., Hunninghake, G.M., Madore, A.M., Larivie ` re, M., Moussette, S., Grundberg, E., Kwan, T., Ouimet, M., Ge, B., et al. (2009). Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am. J. Hum. Genet. 85, 377–393. Zhang, Y., Wong, C.H., Birnbaum, R.Y., Li, G., Favaro, R., Ngan, C.Y., Lim, J., Tai, E., Poh, H.M., Wong, E., et al. (2013). Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504, 306–310. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1016/j.cell.2015.11.024 | - |
dc.identifier.isi | 000366854200010 | - |
item.contributor | Tang, Zhonghui | - |
item.contributor | Luo, Oscar Junhong | - |
item.contributor | Li, Xingwang | - |
item.contributor | Zheng, Meizhen | - |
item.contributor | Jufen Zhu, Jacqueline | - |
item.contributor | SZALAJ, Przemek | - |
item.contributor | Trzaskoma, Pawel | - |
item.contributor | Magalska, Adriana | - |
item.contributor | Wlodarczyk, Jakub | - |
item.contributor | Ruszczycki, Blazej | - |
item.contributor | Michalski, Paul | - |
item.contributor | Piecuch, Emaly | - |
item.contributor | Wang, Ping | - |
item.contributor | Wang, Danjuan | - |
item.contributor | Zhongyuan Tian, Simon | - |
item.contributor | Penrad-Mobayed, May | - |
item.contributor | Sachs, Laurent M. | - |
item.contributor | Ruan, Xiaoan | - |
item.contributor | We, Chia-Lin | - |
item.contributor | Liu, Edison T. | - |
item.contributor | Wilczynski, Grzegorz M. | - |
item.contributor | Plewczynski, Dariusz | - |
item.contributor | Li, Guoliang | - |
item.contributor | Ruan, Yijun | - |
item.accessRights | Restricted Access | - |
item.fullcitation | Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Jufen Zhu, Jacqueline; SZALAJ, Przemek; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Zhongyuan Tian, Simon; Penrad-Mobayed, May; Sachs, Laurent M.; Ruan, Xiaoan; We, Chia-Lin; Liu, Edison T.; Wilczynski, Grzegorz M.; Plewczynski, Dariusz; Li, Guoliang & Ruan, Yijun (2015) CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. In: CELL, 163 (7), p. 1611-1627. | - |
item.validation | ecoom 2017 | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 0092-8674 | - |
crisitem.journal.eissn | 1097-4172 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
cell8603.pdf Restricted Access | Published version | 16.27 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.