Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21513
Title: Structure Theorems for Bicomodule Algebras Over Quasi Hopf Algebras Weak Hopf Algebras and Braided Hopf Algebras
Authors: DELLO, Jeroen 
Panaite, Florin
Van Oystaeyen, Fred
ZHANG, Yinhuo 
Issue Date: 2016
Source: COMMUNICATIONS IN ALGEBRA, 44 (11), p. 4609-4636
Abstract: Let H be a quasi-Hopf algebra, a weak Hopf algebra, or a braided Hopf algebra. Let B be an H-bicomodule algebra such that there exists a morphism of H-bicomodule algebras v H → B. Then we can define an object Bco H , which is a left-left Yetter– Drinfeld module over H, having extra properties that allow to make a smash product B^co H #H, which is an H-bicomodule algebra, isomorphic to B.
Notes: Panaite, F (reprint author), Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania. florin.panaite@imar.ro
Keywords: Bicomodule algebra; Braided Hopf algebra; Quasi-Hopf algebra; Weak Hopf algebra; Yetter–Drinfeld module; 16W30
Document URI: http://hdl.handle.net/1942/21513
ISSN: 0092-7872
e-ISSN: 1532-4125
DOI: 10.1080/00927872.2015.1094487
ISI #: 000380150900002
Rights: Copyright © Taylor & Francis Group, LLC
Category: A1
Type: Journal Contribution
Validations: ecoom 2017
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Structure Theorems for Bicomodule Algebras Over Quasi Hopf Algebras Weak Hopf Algebras and Braided Hopf Algebras.pdf
  Restricted Access
Published version1.78 MBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.