Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21525
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJAUST, Alexander-
dc.contributor.authorSCHUETZ, Jochen-
dc.contributor.authorSeal, David C.-
dc.date.accessioned2016-06-22T13:53:26Z-
dc.date.available2016-06-22T13:53:26Z-
dc.date.issued2016-
dc.identifier.citationJOURNAL OF SCIENTIFIC COMPUTING, 69 (2), p. 866-892-
dc.identifier.issn0885-7474-
dc.identifier.urihttp://hdl.handle.net/1942/21525-
dc.description.abstractIn this paper we apply implicit two-derivative multistage time integrators to conservation laws in one and two dimensions. The one dimensional solver discretizes space with the classical discontinuous Galerkin method, and the two dimensional solver uses a hybridized discontinuous Galerkin spatial discretization for efficiency. We propose methods that permit us to construct implicit solvers using each of these spatial discretizations, wherein a chief difficulty is how to handle the higher derivatives in time. The end result is that the multiderivative time integrator allows us to obtain high-order accuracy in time while keeping the number of implicit stages at a minimum. We show numerical results validating and comparing methods.-
dc.language.isoen-
dc.rights© Springer Science+Business Media New York 2016.-
dc.subject.otherdiscontinuous Galerkin method; multiderivative time integration; convection–diffusion equation; hybridized discontinuous Galerkin method-
dc.titleImplicit Multistage Two-Derivative Discontinuous Galerkin Schemes for Viscous Conservation Laws-
dc.typeJournal Contribution-
dc.identifier.epage892-
dc.identifier.issue2-
dc.identifier.spage866-
dc.identifier.volume69-
local.format.pages26-
local.bibliographicCitation.jcatA1-
dc.description.notesJaust, A (reprint author), Hasselt Univ, Vakgrp Wiskunde Stat, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium. alexander.jaust@uhasselt.be; jochen.schuetz@uhasselt.be; seal@usna.edu-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1007/s10915-016-0221-x-
dc.identifier.isi000385151700016-
item.fulltextWith Fulltext-
item.contributorJAUST, Alexander-
item.contributorSCHUETZ, Jochen-
item.contributorSeal, David C.-
item.fullcitationJAUST, Alexander; SCHUETZ, Jochen & Seal, David C. (2016) Implicit Multistage Two-Derivative Discontinuous Galerkin Schemes for Viscous Conservation Laws. In: JOURNAL OF SCIENTIFIC COMPUTING, 69 (2), p. 866-892.-
item.accessRightsOpen Access-
item.validationecoom 2017-
crisitem.journal.issn0885-7474-
crisitem.journal.eissn1573-7691-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
main.pdfPeer-reviewed author version905.26 kBAdobe PDFView/Open
art%3A10.1007%2Fs10915-016-0221-x.pdf
  Restricted Access
Published version1.16 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.