Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21552
Title: Numerically finite hereditary categories with serre duality
Authors: VAN ROOSMALEN, Adam-Christiaan 
Issue Date: 2016
Publisher: AMER MATHEMATICAL SOC
Source: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 368 (10), p. 7189-7238
Abstract: Let A be an abelian hereditary category with Serre duality. We provide a classification of such categories up to derived equivalence under the additional condition that the Grothendieck group modulo the radical of the Euler form is a free abelian group of finite rank. Such categories are called numerically finite and this condition is satisfied by the category of coherent sheaves on a smooth projective variety.
Notes: [van Roosmalen, Adam-Christiaan] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 18675 8, Czech Republic. [van Roosmalen, Adam-Christiaan] Hasselt Univ, Dept Math & Stat, B-3590 Diepenbeek, Belgium.
Document URI: http://hdl.handle.net/1942/21552
ISSN: 0002-9947
e-ISSN: 1088-6850
DOI: 10.1090/tran/6569
ISI #: 000372533200013
Rights: © 2016 American Mathematical Society
Category: A1
Type: Journal Contribution
Validations: ecoom 2017
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
S0002-9947-2016-06569-1.pdf
  Restricted Access
Published version920.97 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.