Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21552
Title: Numerically finite hereditary categories with serre duality
Authors: VAN ROOSMALEN, Adam-Christiaan 
Issue Date: 2016
Publisher: AMER MATHEMATICAL SOC
Source: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 368 (10), p. 7189-7238
Abstract: Let A be an abelian hereditary category with Serre duality. We provide a classification of such categories up to derived equivalence under the additional condition that the Grothendieck group modulo the radical of the Euler form is a free abelian group of finite rank. Such categories are called numerically finite and this condition is satisfied by the category of coherent sheaves on a smooth projective variety.
Notes: [van Roosmalen, Adam-Christiaan] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 18675 8, Czech Republic. [van Roosmalen, Adam-Christiaan] Hasselt Univ, Dept Math & Stat, B-3590 Diepenbeek, Belgium.
Document URI: http://hdl.handle.net/1942/21552
ISSN: 0002-9947
e-ISSN: 1088-6850
DOI: 10.1090/tran/6569
ISI #: 000372533200013
Rights: © 2016 American Mathematical Society
Category: A1
Type: Journal Contribution
Validations: ecoom 2017
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
S0002-9947-2016-06569-1.pdf
  Restricted Access
published version920.97 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

2
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

2
checked on May 21, 2022

Page view(s)

62
checked on May 24, 2022

Download(s)

46
checked on May 24, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.