Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/215
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAERTS, Marc-
dc.contributor.authorAugustyns, Ilse-
dc.contributor.authorJANSSEN, Paul-
dc.date.accessioned2004-08-30T09:44:47Z-
dc.date.available2004-08-30T09:44:47Z-
dc.date.issued1997-
dc.identifier.citationJournal of nonparametric Statistics, 8(2). p. 127-147-
dc.identifier.urihttp://hdl.handle.net/1942/215-
dc.description.abstractTo estimate cell probabilities for sparse multinomial data several smoothing techniques have been investigated. Here we propose local polynomial smoothers as estimators for the cell probabilities and we study their performance. For the mean sum of squared errors we obtain the optimal rate of convergence and we establish a central limit theorem. We show that local polynomial smoothers provide a nice alternative for already existing nonparametric estimators and we discuss interrelations. Some illustrations are also included.-
dc.language.isoen-
dc.subjectMathematical Statistics-
dc.subjectNon and semiparametric methods-
dc.titleSmoothing sparse multinomial data using local polynomal fitting-
dc.typeJournal Contribution-
dc.identifier.epage147-
dc.identifier.issue2-
dc.identifier.spage127-
dc.identifier.volume8-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1080/10485259708832717-
item.fulltextNo Fulltext-
item.contributorAERTS, Marc-
item.contributorAugustyns, Ilse-
item.contributorJANSSEN, Paul-
item.fullcitationAERTS, Marc; Augustyns, Ilse & JANSSEN, Paul (1997) Smoothing sparse multinomial data using local polynomal fitting. In: Journal of nonparametric Statistics, 8(2). p. 127-147.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.