Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21702
Title: n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study
Authors: Zivcova, Z. Vlckova
Frank, O.
DRIJKONINGEN, Sien 
HAENEN, Ken 
MORTET, Vincent 
Kavan, L.
Issue Date: 2016
Publisher: ROYAL SOC CHEMISTRY
Source: RSC ADVANCES, 6 (56), p. 51387-51393
Abstract: Electrochemical and in situ Raman spectroelectrochemical characterization of n-type phosphorus-doped nanocrystalline diamond (P-NCD) is carried out. The P-NCD films are grown by microwave plasma enhanced chemical vapour deposition and doped with phosphorus at a concentration of 10 000 ppm in the gas phase. Micro-Raman spectroscopy determines the film quality (presence of graphitic or amorphous phases). All electrochemical measurements are performed in aqueous 0.5 M H2SO4 electrolyte solution. Electrochemical impedance spectroscopy (EIS) confirms the n-type conduction of a P-NCD electrode and from the Mott-Schottky plot the donor concentration (N-D) of 1.8 x 10(18) cm(-3) is determined. The in situ Raman spectroelectrochemistry is performed in the potential range from -1.5 to 1.5 V vs. Ag/AgCl using two laser excitations (633 nm and 488 nm). In the case of the as-prepared PNCD film, the Raman modes belonging to non-diamond (sp(2)) impurities change their intensities during applied potentials. The intensity of such Raman peaks increases at cathodic potentials, while at anodic potentials they disappear. On the other hand, the intensity and position of the sp(3) diamond peak (1334 cm(-1)) exhibit no spectroelectrochemical changes and the same holds for the photoluminescence peak (at 1.68 eV) assigned to Si-impurities. After several cyclic voltammetry (CV) scans, the electrochemical potential window of a P-NCD electrode increases. This is due to the "electrochemical burning" of impurities at large anodic potentials, which is also confirmed by in situ Raman spectroelectrochemistry. Angle-resolved XPS confirms partial electrochemical oxidation of P-NCD in thin surface layers.
Notes: [Zivcova, Z. Vlckova; Frank, O.; Kavan, L.] AS CR, J Heyrovsky Inst Phys Chem, Dept Electrochem Mat, Vvi, Dolejskova 3, Prague 18223 8, Czech Republic. [Drijkoningen, S.; Haenen, K.] Hasselt Univ, Inst Mat Res IMO, Wetenschapspk 1, B-3590 Diepenbeek, Belgium. [Haenen, K.] IMEC VZW, IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium. [Mortet, V.] AS CR, Inst Phys, Vvi, Slovance 2, Prague 18221 8, Czech Republic. [Mortet, V.] Czech Tech Univ, Fac Biomed Engn, Sitna 3105, Kladno 27201, Czech Republic.
Document URI: http://hdl.handle.net/1942/21702
e-ISSN: 2046-2069
DOI: 10.1039/c6ra05217g
ISI #: 000377515200114
Rights: This journal is © The Royal Society of Chemistry 2016
Category: A1
Type: Journal Contribution
Validations: ecoom 2017
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
c6ra05217g.pdf
  Restricted Access
Published version602.33 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

5
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

11
checked on Apr 22, 2024

Page view(s)

104
checked on Sep 5, 2022

Download(s)

80
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.