Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2184
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-12T07:35:29Z-
dc.date.available2007-11-12T07:35:29Z-
dc.date.issued2004-
dc.identifier.citationDUKE MATHEMATICAL JOURNAL, 122(3). p. 423-455-
dc.identifier.issn0012-7094-
dc.identifier.urihttp://hdl.handle.net/1942/2184-
dc.description.abstractFor Y, Y+ three-dimensional smooth varieties related by a flop, Bondal and Orlov conjectured that the derived categories D-b (coh(Y)) and D-b (coh(Y+)) are equivalent. This conjecture was recently proved by Bridgeland. Our aim in this paper is to give a partially new proof of Bridgeland's result using noncommutative rings. The new proof also covers some mild singular and higher-dimensional situations (including those occuring in the recent paper by Chen [11]).-
dc.languageEnglish-
dc.language.isoen-
dc.publisherDUKE UNIV PRESS-
dc.titleThree-dimensional flops and noncommutative rings-
dc.typeJournal Contribution-
dc.identifier.epage455-
dc.identifier.issue3-
dc.identifier.spage423-
dc.identifier.volume122-
local.format.pages33-
local.bibliographicCitation.jcatA1-
dc.description.notesLimburgs Univ Ctr, Dept Math, B-3590 Diepenbeek, Belgium.Van den Bergh, M, Limburgs Univ Ctr, Dept Math, Univ Campus, B-3590 Diepenbeek, Belgium.vdbergh@luc.ac.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1215/S0012-7094-04-12231-6-
dc.identifier.isi000221392500001-
item.fulltextNo Fulltext-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationVAN DEN BERGH, Michel (2004) Three-dimensional flops and noncommutative rings. In: DUKE MATHEMATICAL JOURNAL, 122(3). p. 423-455.-
item.accessRightsClosed Access-
item.validationecoom 2005-
crisitem.journal.issn0012-7094-
crisitem.journal.eissn1547-7398-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.