Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21872
Title: Quantifying Parameter and Structural Uncertainty of Dynamic Disease Transmission Models Using MCMC: An Application to Rotavirus Vaccination in England and Wales
Authors: Bilcke, Joke
Chapman, Ruth
Atchison, Christina
Cromer, Deborah
Johnson, Helen
WILLEM, Lander 
Cox, Martin
Edmunds, William John
Jit, Mark
Issue Date: 2015
Source: MEDICAL DECISION MAKING, 35 (5), p. 633-647
Abstract: Background. Two vaccines (Rotarix and RotaTeq) are highly effective at preventing severe rotavirus disease. Rotavirus vaccination has been introduced in the United Kingdom and other countries partly based on modeling and cost-effectiveness results. However, most of these models fail to account for the uncertainty about several vaccine characteristics and the mechanism of vaccine action. Methods. A deterministic dynamic transmission model of rotavirus vaccination in the United Kingdom was developed. This improves on previous models by 1) allowing for 2 different mechanisms of action for Rotarix and RotaTeq, 2) using clinical trial data to understand these mechanisms, and 3) accounting for uncertainty by using Markov Chain Monte Carlo. Results. In the long run, Rotarix and RotaTeq are predicted to reduce the overall rotavirus incidence by 50% (39%-63%) and 44% (30%-62%), respectively but with an increase in incidence in primary school children and adults up to 25 y of age. The vaccines are estimated to give more protection than 1 or 2 natural infections. The duration of protection is highly uncertain but has only impact on the predicted reduction in rotavirus burden for values lower than 10 y. The 2 vaccine mechanism structures fit equally well with the clinical trial data. Long-term postvaccination dynamics cannot be predicted reliably with the data available. Conclusion. Accounting for the joint uncertainty of several vaccine characteristics resulted in more insight into which of these are crucial for determining the impact of rotavirus vaccination. Data for up to at least 10 y postvaccination and covering older children and adults are crucial to address remaining questions on the impact of widespread rotavirus vaccination.
Keywords: rotavirus; vaccination; uncertainty; dynamic transmission model; Markov Chain Monte Carlo
Document URI: http://hdl.handle.net/1942/21872
ISSN: 0272-989X
e-ISSN: 1552-681X
DOI: 10.1177/0272989X14566013
ISI #: 000356431100008
Rights: © The Author(s) 2015 Reprints and permission: http://www.sagepub.com/journalsPermissions.nav
Category: A1
Type: Journal Contribution
Validations: ecoom 2016
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
bilcke2015.pdf
  Restricted Access
Published version1 MBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

9
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

13
checked on Sep 28, 2024

Page view(s)

40
checked on Sep 7, 2022

Download(s)

10
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.