Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2189
Title: The Drinfel'd double of multiplier Hopf algebras
Authors: DELVAUX, Lydia 
Van Daele, A
Issue Date: 2004
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Source: JOURNAL OF ALGEBRA, 272(1). p. 273-291
Abstract: Let <A, B> be a pairing of two regular multiplier Hopf algebras A and B. The Drinfel'd double associated to this pairing is constructed by using appropriate representations of A and B on the same vector space B circle times A. We realize the Drinfel'd double, denoted by D, as an algebra of operators on the vector space B circle times A. In the case that <A, B> is a multiplier Hopf*-algebra pairing, we prove that D is again a multiplier Hopf*-algebra. If A and B carry positive integrals, we prove that D also has a positive integral. This proof is not given before.
Notes: Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium. Catholic Univ Louvain, Dept Math, B-3001 Heverlee, Belgium.Delvaux, L, Limburgs Univ Ctr, Dept WNI, Univ Laan, B-3590 Diepenbeek, Belgium.lydia.delvaux@luc.ac.be alfons.vandaele@wis.kuleuven.ac.be
Document URI: http://hdl.handle.net/1942/2189
ISSN: 0021-8693
e-ISSN: 1090-266X
DOI: 10.1016/j.jalgebra.2003.03.003
ISI #: 000188064100011
Category: A1
Type: Journal Contribution
Validations: ecoom 2005
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

9
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

13
checked on May 21, 2022

Page view(s)

44
checked on May 27, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.