Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/2190
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Crawley-Boevey, W | - |
dc.contributor.author | VAN DEN BERGH, Michel | - |
dc.date.accessioned | 2007-11-12T07:40:38Z | - |
dc.date.available | 2007-11-12T07:40:38Z | - |
dc.date.issued | 2004 | - |
dc.identifier.citation | INVENTIONES MATHEMATICAE, 155(3). p. 537-559 | - |
dc.identifier.issn | 0020-9910 | - |
dc.identifier.uri | http://hdl.handle.net/1942/2190 | - |
dc.description.abstract | A conjecture of Kac states that the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field with given dimension vector has positive coefficients and furthermore that its constant term is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we prove these conjectures for indivisible dimension vectors. | - |
dc.format.extent | 259201 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER-VERLAG | - |
dc.title | Absolutely indecomposable representations and Kac-Moody Lie algebras | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 559 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 537 | - |
dc.identifier.volume | 155 | - |
local.format.pages | 23 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England. Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Crawley-Boevey, W, Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England.w.crawley-boevey@leeds.ac.uk vdbergh@luc.ac.be | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1007/s00222-003-0329-0 | - |
dc.identifier.isi | 000188839900003 | - |
item.fulltext | With Fulltext | - |
item.contributor | Crawley-Boevey, W | - |
item.contributor | VAN DEN BERGH, Michel | - |
item.fullcitation | Crawley-Boevey, W & VAN DEN BERGH, Michel (2004) Absolutely indecomposable representations and Kac-Moody Lie algebras. In: INVENTIONES MATHEMATICAE, 155(3). p. 537-559. | - |
item.accessRights | Closed Access | - |
item.validation | ecoom 2005 | - |
crisitem.journal.issn | 0020-9910 | - |
crisitem.journal.eissn | 1432-1297 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
0106009v3.pdf | 253.13 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.