Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2190
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCrawley-Boevey, W-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-12T07:40:38Z-
dc.date.available2007-11-12T07:40:38Z-
dc.date.issued2004-
dc.identifier.citationINVENTIONES MATHEMATICAE, 155(3). p. 537-559-
dc.identifier.issn0020-9910-
dc.identifier.urihttp://hdl.handle.net/1942/2190-
dc.description.abstractA conjecture of Kac states that the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field with given dimension vector has positive coefficients and furthermore that its constant term is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we prove these conjectures for indivisible dimension vectors.-
dc.format.extent259201 bytes-
dc.format.mimetypeapplication/pdf-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER-VERLAG-
dc.titleAbsolutely indecomposable representations and Kac-Moody Lie algebras-
dc.typeJournal Contribution-
dc.identifier.epage559-
dc.identifier.issue3-
dc.identifier.spage537-
dc.identifier.volume155-
local.format.pages23-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England. Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Crawley-Boevey, W, Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England.w.crawley-boevey@leeds.ac.uk vdbergh@luc.ac.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/s00222-003-0329-0-
dc.identifier.isi000188839900003-
item.fulltextWith Fulltext-
item.contributorCrawley-Boevey, W-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationCrawley-Boevey, W & VAN DEN BERGH, Michel (2004) Absolutely indecomposable representations and Kac-Moody Lie algebras. In: INVENTIONES MATHEMATICAE, 155(3). p. 537-559.-
item.accessRightsClosed Access-
item.validationecoom 2005-
crisitem.journal.issn0020-9910-
crisitem.journal.eissn1432-1297-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
0106009v3.pdf253.13 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.