Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2190
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCrawley-Boevey, W-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2007-11-12T07:40:38Z-
dc.date.available2007-11-12T07:40:38Z-
dc.date.issued2004-
dc.identifier.citationINVENTIONES MATHEMATICAE, 155(3). p. 537-559-
dc.identifier.issn0020-9910-
dc.identifier.urihttp://hdl.handle.net/1942/2190-
dc.description.abstractA conjecture of Kac states that the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field with given dimension vector has positive coefficients and furthermore that its constant term is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we prove these conjectures for indivisible dimension vectors.-
dc.format.extent259201 bytes-
dc.format.mimetypeapplication/pdf-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER-VERLAG-
dc.titleAbsolutely indecomposable representations and Kac-Moody Lie algebras-
dc.typeJournal Contribution-
dc.identifier.epage559-
dc.identifier.issue3-
dc.identifier.spage537-
dc.identifier.volume155-
local.format.pages23-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England. Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Crawley-Boevey, W, Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England.w.crawley-boevey@leeds.ac.uk vdbergh@luc.ac.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/s00222-003-0329-0-
dc.identifier.isi000188839900003-
item.validationecoom 2005-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.fullcitationCrawley-Boevey, W & VAN DEN BERGH, Michel (2004) Absolutely indecomposable representations and Kac-Moody Lie algebras. In: INVENTIONES MATHEMATICAE, 155(3). p. 537-559.-
item.contributorCrawley-Boevey, W-
item.contributorVAN DEN BERGH, Michel-
crisitem.journal.issn0020-9910-
crisitem.journal.eissn1432-1297-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
0106009v3.pdf253.13 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

64
checked on Oct 5, 2025

WEB OF SCIENCETM
Citations

64
checked on Oct 11, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.