Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/2190Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Crawley-Boevey, W | - |
| dc.contributor.author | VAN DEN BERGH, Michel | - |
| dc.date.accessioned | 2007-11-12T07:40:38Z | - |
| dc.date.available | 2007-11-12T07:40:38Z | - |
| dc.date.issued | 2004 | - |
| dc.identifier.citation | INVENTIONES MATHEMATICAE, 155(3). p. 537-559 | - |
| dc.identifier.issn | 0020-9910 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/2190 | - |
| dc.description.abstract | A conjecture of Kac states that the polynomial counting the number of absolutely indecomposable representations of a quiver over a finite field with given dimension vector has positive coefficients and furthermore that its constant term is equal to the multiplicity of the corresponding root in the associated Kac-Moody Lie algebra. In this paper we prove these conjectures for indivisible dimension vectors. | - |
| dc.format.extent | 259201 bytes | - |
| dc.format.mimetype | application/pdf | - |
| dc.language | English | - |
| dc.language.iso | en | - |
| dc.publisher | SPRINGER-VERLAG | - |
| dc.title | Absolutely indecomposable representations and Kac-Moody Lie algebras | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 559 | - |
| dc.identifier.issue | 3 | - |
| dc.identifier.spage | 537 | - |
| dc.identifier.volume | 155 | - |
| local.format.pages | 23 | - |
| local.bibliographicCitation.jcat | A1 | - |
| dc.description.notes | Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England. Limburgs Univ Ctr, Dept WNI, B-3590 Diepenbeek, Belgium.Crawley-Boevey, W, Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England.w.crawley-boevey@leeds.ac.uk vdbergh@luc.ac.be | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.bibliographicCitation.oldjcat | A1 | - |
| dc.identifier.doi | 10.1007/s00222-003-0329-0 | - |
| dc.identifier.isi | 000188839900003 | - |
| item.validation | ecoom 2005 | - |
| item.fulltext | With Fulltext | - |
| item.contributor | Crawley-Boevey, W | - |
| item.contributor | VAN DEN BERGH, Michel | - |
| item.fullcitation | Crawley-Boevey, W & VAN DEN BERGH, Michel (2004) Absolutely indecomposable representations and Kac-Moody Lie algebras. In: INVENTIONES MATHEMATICAE, 155(3). p. 537-559. | - |
| item.accessRights | Closed Access | - |
| crisitem.journal.issn | 0020-9910 | - |
| crisitem.journal.eissn | 1432-1297 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 0106009v3.pdf | 253.13 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
66
checked on Dec 11, 2025
WEB OF SCIENCETM
Citations
64
checked on Dec 12, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.