Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22052
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHOANG, Quang-
dc.contributor.authorPOBEDINSKAS, Paulius-
dc.contributor.authorNICLEY, Shannon-
dc.contributor.authorTURNER, Stuart-
dc.contributor.authorJANSSENS, Stoffel-
dc.contributor.authorVAN BAEL, Marlies-
dc.contributor.authorD'HAEN, Jan-
dc.contributor.authorHAENEN, Ken-
dc.date.accessioned2016-09-19T12:08:22Z-
dc.date.available2016-09-19T12:08:22Z-
dc.date.issued2016-
dc.identifier.citationCRYSTAL GROWTH & DESIGN, 16(7), p. 3699-3708-
dc.identifier.issn1528-7483-
dc.identifier.urihttp://hdl.handle.net/1942/22052-
dc.description.abstractHexagonal boron nitride nanowall thin films were deposited on Si(100) substrates using a Ar(51%)/N-2(44%)/H-2(5%) gas mixture by unbalanced radio frequency sputtering. The effects of various target-to-substrate distances, substrate temperatures, and substrate tilting angles were investigated. When the substrate is close to the target, hydrogen etching plays a significant role in the film growth, while the effect is negligible for films deposited at a farther distance. The relative quantity of defects was measured by a non-destructive infrared spectroscopy technique that characterized the hydrogen incorporation at dangling nitrogen bonds at defect sites in the deposited films. Despite the films deposited at different substrate tilting angles, the nanowalls of those films were found to consistently grow vertical to the substrate surface, independent of the tilting angle. This implies that chemical processes, rather than physical ones, govern the growth of the nanowalls. The results also reveal that the degree of nanowall crystallization is tunable by varying the growth parameters. Finally, evidence of hydrogen desorption during vacuum annealing is given based on measurements of infrared stretching (E-1u) and bending (A(2u)) modes of the optical phonons, and the H-N vibration mode.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rights© 2016 American Chemical Society-
dc.titleElucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls-
dc.typeJournal Contribution-
dc.identifier.epage3708-
dc.identifier.issue7-
dc.identifier.spage3699-
dc.identifier.volume16-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notes[Hoang, Duc-Quang; Pobedinskas, Paulius; Nicley, Shannon S.; Janssens, Stoffel D.; Van Bael, Marlies K.; D'Haen, Jan; Haenen, Ken] Hasselt Univ, Inst Mat Res IMO, B-3590 Diepenbeek, Belgium. [Hoang, Duc-Quang; Pobedinskas, Paulius; Nicley, Shannon S.; Janssens, Stoffel D.; Van Bael, Marlies K.; D'Haen, Jan; Haenen, Ken] IMEC Vzw, IMOMEC, B-3590 Diepenbeek, Belgium. [Turner, Stuart] Univ Antwerp, Electron Microscopy Mat Sci, B-2000 Antwerp, Belgium.-
local.publisher.placeWASHINGTON-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acs.cgd.6b00191-
dc.identifier.isi000379456700020-
item.fullcitationHOANG, Quang; POBEDINSKAS, Paulius; NICLEY, Shannon; TURNER, Stuart; JANSSENS, Stoffel; VAN BAEL, Marlies; D'HAEN, Jan & HAENEN, Ken (2016) Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls. In: CRYSTAL GROWTH & DESIGN, 16(7), p. 3699-3708.-
item.fulltextWith Fulltext-
item.validationecoom 2017-
item.contributorHOANG, Quang-
item.contributorPOBEDINSKAS, Paulius-
item.contributorNICLEY, Shannon-
item.contributorTURNER, Stuart-
item.contributorJANSSENS, Stoffel-
item.contributorVAN BAEL, Marlies-
item.contributorD'HAEN, Jan-
item.contributorHAENEN, Ken-
item.accessRightsRestricted Access-
crisitem.journal.issn1528-7483-
crisitem.journal.eissn1528-7505-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
acs%2Ecgd%2E6b00191.pdf
  Restricted Access
Published version9.93 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

9
checked on Sep 7, 2020

WEB OF SCIENCETM
Citations

11
checked on May 8, 2024

Page view(s)

64
checked on Sep 7, 2022

Download(s)

68
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.