Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22054
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira, Izabela R. C.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorDEMETRIO, Clarice-
dc.contributor.authorDias, Carlos T. S.-
dc.contributor.authorGiolo, Suely R.-
dc.contributor.authorAndrade, Marcela C.-
dc.date.accessioned2016-09-19T13:01:18Z-
dc.date.available2016-09-19T13:01:18Z-
dc.date.issued2016-
dc.identifier.citationBIOMETRICAL JOURNAL, 58(4), p. 852-867-
dc.identifier.issn0323-3847-
dc.identifier.urihttp://hdl.handle.net/1942/22054-
dc.description.abstractThe intraclass correlation is commonly used with clustered data. It is often estimated based on fitting a model to hierarchical data and it leads, in turn, to several concepts such as reliability, heritability, inter-rater agreement, etc. For data where linear models can be used, such measures can be defined as ratios of variance components. Matters are more difficult for non-Gaussian outcomes. The focus here is on count and time-to-event outcomes where so-called combined models are used, extending generalized linear mixed models, to describe the data. These models combine normal and gamma random effects to allow for both correlation due to data hierarchies as well as for overdispersion. Furthermore, because the models admit closed-form expressions for the means, variances, higher moments, and even the joint marginal distribution, it is demonstrated that closed forms of intraclass correlations exist. The proposed methodology is illustrated using data from agricultural and livestock studies.-
dc.description.sponsorshipGeert Molenberghs gratefully acknowledges support from IAP research Network P7/06 of the Belgian Government (Belgian Science Policy). This work was partially supported by grants from CNPq, National Council for Scientific and Technological Development, Brazilian science funding agency.-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL-
dc.rights© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.subject.otherGeneralized linear mixed model; ICC; Overdispersion; Poisson distribution; Weibull distribution-
dc.subject.othergeneralized linear mixed model; ICC; overdispersion; Poisson distribution; Weibull distribution-
dc.titleQuantifying intraclass correlations for count and time-to-event data-
dc.typeJournal Contribution-
dc.identifier.epage867-
dc.identifier.issue4-
dc.identifier.spage852-
dc.identifier.volume58-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notes[Oliveira, Izabela R. C.] Univ Fed Lavras, Dept Exact Sci, BR-37200000 Lavras, Brazil. [Oliveira, Izabela R. C.; Molenberghs, Geert] Univ Hasselt, BioStat 1, B-3500 Hasselt, Belgium. [Oliveira, Izabela R. C.; Demetrio, Clarice G. B.; Dias, Carlos T. S.] ESALQ USP, Dept Exact Sci, BR-13418900 Piracicaba, Brazil. [Molenberghs, Geert] Katholieke Univ Leuven, BioStat 1, B-3000 Leuven, Belgium. [Giolo, Suely R.] Univ Fed Parana, Dept Stat, BR-80060000 Curitiba, Parana, Brazil. [Andrade, Marcela C.] Univ Fed Lavras, Dept Biol, BR-37200000 Lavras, Brazil.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/bimj.201500093-
dc.identifier.isi000379929300008-
item.fulltextWith Fulltext-
item.fullcitationOliveira, Izabela R. C.; MOLENBERGHS, Geert; DEMETRIO, Clarice; Dias, Carlos T. S.; Giolo, Suely R. & Andrade, Marcela C. (2016) Quantifying intraclass correlations for count and time-to-event data. In: BIOMETRICAL JOURNAL, 58(4), p. 852-867.-
item.validationecoom 2017-
item.accessRightsRestricted Access-
item.contributorOliveira, Izabela R. C.-
item.contributorMOLENBERGHS, Geert-
item.contributorDEMETRIO, Clarice-
item.contributorDias, Carlos T. S.-
item.contributorGiolo, Suely R.-
item.contributorAndrade, Marcela C.-
crisitem.journal.issn0323-3847-
crisitem.journal.eissn1521-4036-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
oliveira 1.pdf
  Restricted Access
Published version141.79 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.