Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2206
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRENARD, Didier-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorGEYS, Helena-
dc.date.accessioned2007-11-12T08:11:46Z-
dc.date.available2007-11-12T08:11:46Z-
dc.date.issued2004-
dc.identifier.citationCOMPUTATIONAL STATISTICS & DATA ANALYSIS, 44(4), PII S0167-9473(02)00263-3. p. 649-667-
dc.identifier.issn0167-9473-
dc.identifier.urihttp://hdl.handle.net/1942/2206-
dc.description.abstractA pairwise likelihood (PL) estimation procedure is examined in multilevel models with binary responses and probit link. The PL is obtained as the product of bivariate likelihoods for within-cluster pairs of observations. The resulting estimator still enjoys desirable asymptotic properties such as consistency and asymptotic normality. Therefore, with this approach a compromise between computational burden and loss of efficiency is sought. A simulation study was conducted to compare PL with second-order penalized quasi-likelihood (PQL2) and maximum (marginal) likelihood (ML) estimation methods. The loss of efficiency of the PL estimator is found to be generally moderate. Also, PL tends to show more robustness against convergence problems than PQL2. (C) 2002 Elsevier B.V.. All rights reserved.-
dc.description.sponsorshipThe first author gratefully acknowledges support from an LUC Bijzonder Onderzoeksfonds grant. The third author was supported by the Institute for the Promotion of Innovation by Science and Technology in Flanders, Belgium.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.rights(c) 2002 Elsevier B.V. All rights reserved.-
dc.subject.otherbinary response data; composite likelihood; maximum marginal likelihood; multilevel modeling; penalized quasi-likelihood; pairwise likelihood-
dc.subject.otherbinary response data; composite likelihood; maximum marginal likelihood; multilevel modeling; penalized quasi-likelihood; pairwise likelihood-
dc.titleA pairwise likelihood approach to estimation in multilevel probit models-
dc.typeJournal Contribution-
dc.identifier.epage667-
dc.identifier.issue4-
dc.identifier.spage649-
dc.identifier.volume44-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
local.bibliographicCitation.artnrPII S0167-9473(02)00263-3-
dc.identifier.doi10.1016/S0167-9473(02)00263-3-
dc.identifier.isi000187752100008-
item.fulltextWith Fulltext-
item.contributorRENARD, Didier-
item.contributorMOLENBERGHS, Geert-
item.contributorGEYS, Helena-
item.fullcitationRENARD, Didier; MOLENBERGHS, Geert & GEYS, Helena (2004) A pairwise likelihood approach to estimation in multilevel probit models. In: COMPUTATIONAL STATISTICS & DATA ANALYSIS, 44(4), PII S0167-9473(02)00263-3. p. 649-667.-
item.accessRightsRestricted Access-
item.validationecoom 2005-
crisitem.journal.issn0167-9473-
crisitem.journal.eissn1872-7352-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
a.pdf
  Restricted Access
Published version354.76 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.