Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2269
Title: Characterization of three human oligodendroglial cell lines as a model to study oligodendrocyte injury: Morphology and oligodendrocyte-specific gene expression
Authors: BUNTINX, Mieke 
VANDERLOCHT, Joris 
HELLINGS, Niels 
VANDENABEELE, Frank 
LAMBRICHTS, Ivo 
RAUS, Jef 
AMELOOT, Marcel 
STINISSEN, Piet 
STEELS, Paul 
Issue Date: 2003
Publisher: KLUWER ACADEMIC PUBL
Source: JOURNAL OF NEUROCYTOLOGY, 32(1). p. 25-38
Abstract: Oligodendrocytes, the myelin-forming cells of the central nervous system, are the target of pathogenic immune responses in multiple sclerosis. Primary cultures of human oligodendrocytes have been used to unravel the cellular and molecular mechanisms of immune-mediated injury of oligodendrocytes. However, these studies are hampered by the limited availability of viable human brain tissue. The present study was aimed at comparing the morphological and biochemical characteristics of the human oligodendroglial cell lines HOG, MO3.13 and KG-1C. We have determined oligodendrocyte-associated features of these lines and analyzed the degree to which they can be used as a model of human oligodendrocytes arrested at specific developmental stages. The oligodendroglial cell lines all exhibited markers of immature oligodendrocytes, such as CNPase and GalC, but not the astrocytic marker GFAP. Differentiation could be induced in HOG and MO3.13 cells, as was seen through a decrease in proliferation, an increase in process extension without formation of myelin sheets and up-regulation of genes associated with mature oligodendrocytes such as MBP and MOG. Microarray analysis revealed the expression of MAG, MOBP and OMG genes in HOG cells. The KG-1C cells displayed poor growth characteristics in the recommended conditions. In conclusion, our data show that the oligodendroglial cell lines HOG and MO3.13 can be used as a model of human oligodendrocytes 'arrested' in an immature developmental stage. Culturing in appropriate medium can induce further differentiation of these cells. These cell lines can therefore be applied as a model to study immune-mediated injury of oligodendrocytes in relation to disease.
Notes: Limburgs Univ Ctr, Biomed Onderzoeksinst, B-3590 Diepenbeek, Belgium. Transnatl Univ Limburg, Sch Life Sci, B-3590 Diepenbeek, Belgium.Stinissen, P, Limburgs Univ Ctr, Biomed Onderzoeksinst, Univ Campus A, B-3590 Diepenbeek, Belgium.
Document URI: http://hdl.handle.net/1942/2269
ISSN: 0300-4864
DOI: 10.1023/A:1027324230923
ISI #: 000186285600002
Category: A1
Type: Journal Contribution
Validations: ecoom 2004
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

70
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

91
checked on Apr 22, 2024

Page view(s)

96
checked on Jun 19, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.