Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/22724
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bunouf, Pierre | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | Grouin, Jean-Marie | - |
dc.contributor.author | THIJS, Herbert | - |
dc.date.accessioned | 2016-11-23T12:28:29Z | - |
dc.date.available | 2016-11-23T12:28:29Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | JOURNAL OF STATISTICAL SOFTWARE, 68(8) | - |
dc.identifier.issn | 1548-7660 | - |
dc.identifier.uri | http://hdl.handle.net/1942/22724 | - |
dc.description.abstract | Pattern-mixture models have gained considerable interest in recent years. Pattern mixture modeling allows the analysis of incomplete longitudinal outcomes under a variety of missingness mechanisms. In this manuscript, we describe a SAS program which combines R functionalities to fit pattern-mixture models, considering the cases that missingness mechanisms are at random and not at random. Patterns are defined based on missingness at every time point and parameter estimation is based on a full group-by time interaction. The program implements a multiple imputation method under so-called identifying restrictions. The code is illustrated using data from a placebo-controlled clinical trial. This manuscript and the program are directed to SAS users with minimal knowledge of the R language. | - |
dc.description.sponsorship | The authors thank the two anonymous reviewers for their relevant and constructive comments on earlier draft versions that helped to improve the quality of this manuscript. Financial support from the IAP research network #P7/06 of the Belgian Government (Belgian Science Policy) is gratefully acknowledged. The research leading to these results has also received funding from the European Seventh Framework programme FP7 2007-2013 under grant agreement Nr. 602552.ogramme FP7 [602552] | - |
dc.language.iso | en | - |
dc.publisher | JOURNAL STATISTICAL SOFTWARE | - |
dc.subject.other | MAR; MNAR; pattern-mixture model; identifying restriction; multiple imputation | - |
dc.subject.other | MAR; MNAR; pattern-mixture model; identifying restriction; multiple imputation | - |
dc.title | A SAS Program Combining R Functionalities to Implement Pattern-Mixture Models | - |
dc.type | Journal Contribution | - |
dc.identifier.issue | 8 | - |
dc.identifier.volume | 68 | - |
local.format.pages | 26 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Bunouf, Pierre] Labs Pierre Fabre, 142 Rue Village Entreprises, F-31670 Labege, France. [Molenberghs, Geert; Thijs, Herbert] Univ Hasselt, I BioStat, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium. [Molenberghs, Geert; Thijs, Herbert] Katholieke Univ Leuven, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium. [Grouin, Jean-Marie] Univ Rouen, INSERM, U657, Rue Lavoisier, F-76821 Mont St Aignan, France. | - |
local.publisher.place | LOS ANGELES | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.18637/jss.v068.i08 | - |
dc.identifier.isi | 000384910000001 | - |
item.validation | ecoom 2017 | - |
item.contributor | Bunouf, Pierre | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | Grouin, Jean-Marie | - |
item.contributor | THIJS, Herbert | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
item.fullcitation | Bunouf, Pierre; MOLENBERGHS, Geert; Grouin, Jean-Marie & THIJS, Herbert (2015) A SAS Program Combining R Functionalities to Implement Pattern-Mixture Models. In: JOURNAL OF STATISTICAL SOFTWARE, 68(8). | - |
crisitem.journal.issn | 1548-7660 | - |
crisitem.journal.eissn | 1548-7660 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
bunouf 1.pdf | Published version | 414.87 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.