Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2289
Title: Bankruptcy prediction using a data envelopment analysis
Authors: CIELEN, Agnes 
PEETERS, Ludo 
VANHOOF, Koen 
Issue Date: 2004
Publisher: ELSEVIER SCIENCE BV
Source: European Journal of Operational Research, 154 (2), p. 526-532
Abstract: There is a growing recognition that a variety of machine learning problems can be approached advantageously by tools from the field of optimization. In this paper we compare the classification performance of a linear programming model, a data envelopment (DEA) model and a rule induction (C5.0) model. In terms of accuracy and employment the DEA model outperforms the other models. (C) 2003 Elsevier B.V. All rights reserved.
Notes: Univ Limburg, Dept Appl Econ, B-3590 Diepenbeek, Belgium.Vanhoof, K, Univ Limburg, Dept Appl Econ, Univ Campus, B-3590 Diepenbeek, Belgium.
Keywords: data envelopment analysis;Data envelopment analysis;risk analysis;Risk analysis;decision support systems;Decision support systems;banking;Banking
Document URI: http://hdl.handle.net/1942/2289
ISSN: 0377-2217
e-ISSN: 1872-6860
DOI: 10.1016/S0377-2217(03)00186-3
ISI #: 000187779600014
Rights: 2003 Elsevier B.V. All rights reserved.
Category: A1
Type: Journal Contribution
Validations: ecoom 2005
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
doi_10.1016_S0377-2217(03)00186-3.pdf
  Restricted Access
Published version322.9 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

144
checked on Sep 1, 2025

WEB OF SCIENCETM
Citations

118
checked on Sep 2, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.