Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2289
Title: Bankruptcy prediction using a data envelopment analysis
Authors: CIELEN, Agnes 
PEETERS, Ludo 
VANHOOF, Koen 
Issue Date: 2004
Publisher: ELSEVIER SCIENCE BV
Source: European Journal of Operational Research, 154 (2), p. 526-532
Abstract: There is a growing recognition that a variety of machine learning problems can be approached advantageously by tools from the field of optimization. In this paper we compare the classification performance of a linear programming model, a data envelopment (DEA) model and a rule induction (C5.0) model. In terms of accuracy and employment the DEA model outperforms the other models. (C) 2003 Elsevier B.V. All rights reserved.
Notes: Univ Limburg, Dept Appl Econ, B-3590 Diepenbeek, Belgium.Vanhoof, K, Univ Limburg, Dept Appl Econ, Univ Campus, B-3590 Diepenbeek, Belgium.
Keywords: data envelopment analysis;Data envelopment analysis;risk analysis;Risk analysis;decision support systems;Decision support systems;banking;Banking
Document URI: http://hdl.handle.net/1942/2289
ISSN: 0377-2217
e-ISSN: 1872-6860
DOI: 10.1016/S0377-2217(03)00186-3
ISI #: 000187779600014
Rights: 2003 Elsevier B.V. All rights reserved.
Category: A1
Type: Journal Contribution
Validations: ecoom 2005
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
doi_10.1016_S0377-2217(03)00186-3.pdf
  Restricted Access
Published version322.9 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.