Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22997
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorFalcon, Rafael-
dc.contributor.authorPAPAGEORGIOU, Elpiniki-
dc.contributor.authorBello, Rafael-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2017-01-09T07:44:31Z-
dc.date.available2017-01-09T07:44:31Z-
dc.date.issued2016-
dc.identifier.citation2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE,p. 64-71-
dc.identifier.isbn9781509006250-
dc.identifier.issn1544-5615-
dc.identifier.urihttp://hdl.handle.net/1942/22997-
dc.description.abstractIn a multilabel classification problem, each object gets associated with multiple target labels. Graded multilabel classification (GMLC) problems go a step further in that they provide a degree of association between an object and each possible label. The goal of a GMLC model is to learn this mapping while minimizing a certain loss function. In this paper, we tackle GMLC problems from a Granular Computing perspective for the first time. The proposed schemes, termed as partitive granular cognitive maps (PGCMs), lean on Fuzzy Cognitive Maps (FCMs) whose input concepts represent cluster prototypes elicited via Fuzzy C-Means whereas the output concepts denote the set of existing labels. We consider three different linkages between the FCM’s input and output concepts and learn the causal connections (weight matrix) through a Particle Swarm Optimizer (PSO). During the exploitation phase, the membership grades of a test object to each fuzzy cluster prototype in the PGCM are taken as the initial activation values of the recurrent network. Empirical results on 16 synthetically generated datasets show that the PGCM architecture is capable of accurately solving GMLC instances.-
dc.language.isoen-
dc.publisherIEEE-
dc.relation.ispartofseriesIEEE World Congress on Computational Intelligence-
dc.rights© Copyright 2016 IEEE - All rights reserved.-
dc.titlePartitive Granular Cognitive Maps to Graded Multilabel Classification-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate24-29/07/2016-
local.bibliographicCitation.conferencename2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)-
local.bibliographicCitation.conferenceplaceVancouver, Canada-
dc.identifier.epage71-
dc.identifier.spage64-
local.bibliographicCitation.jcatC1-
dc.description.notesNapoles, G (reprint author), Hasselt Univ Campus Diepenbeek, BE-3590 Diepenbeek, Belgium. gonzalo.napoles@student.uhasselt.be; rfalcon@uottawa.ca; epapageorgiou@mail.teiste.gr; rbellop@uclv.edu.cu; koen.vanhoof@uhasselt.be-
local.publisher.placeNew York, NY, USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/FUZZ-IEEE.2016.7737848-
dc.identifier.isi000392150700189-
local.bibliographicCitation.btitle2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)-
item.validationecoom 2018-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorFalcon, Rafael-
item.contributorPAPAGEORGIOU, Elpiniki-
item.contributorBello, Rafael-
item.contributorVANHOOF, Koen-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationNAPOLES RUIZ, Gonzalo; Falcon, Rafael; PAPAGEORGIOU, Elpiniki; Bello, Rafael & VANHOOF, Koen (2016) Partitive Granular Cognitive Maps to Graded Multilabel Classification. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE,p. 64-71.-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Partitive-GCM-WCCI-2016 (final).pdfPeer-reviewed author version1.12 MBAdobe PDFView/Open
F-16082 Partitive Granular Cognitive Maps to Graded Multilabel Classification.pdfPublished version1.31 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.