Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2317
Title: Identifiability analysis of models for reversible intermolecular two-state excited-state processes coupled with species-dependent rotational diffusion monitored by time-resolved fluorescence depolarization
Authors: SZUBIAKOWSKI, Jacek 
DALE, Robert 
Boens, N
AMELOOT, Marcel 
Issue Date: 2004
Publisher: AMER INST PHYSICS
Source: JOURNAL OF CHEMICAL PHYSICS, 121(16). p. 7829-7839
Abstract: A deterministic identifiability analysis of the kinetic model for a reversible intermolecular two-state excited-state process with species-dependent rotational diffusion described by Brownian reorientation is presented. The cases of both spherically and cylindrically symmetric rotors, with no change in the principal axes of rotation on interconversion in the latter case, are specifically considered. The identifiability analysis is carried out in terms of compartmental modeling based on the S(t)=I-parallel to(t)+2I(perpendicular to)(t) and D(t)=I-parallel to(t)-I-perpendicular to(t) functions, where I-parallel to(t) and I-perpendicular to(t) are the delta-response functions for fluorescence, polarized, respectively, parallel and perpendicular to the electric vector of linearly polarized excitation. It is shown that, from polarized time-resolved fluorescence data collected at two concentrations of coreactant and three appropriately chosen emission wavelengths, (a) a unique set of rate constants for the overall excited-state process is always obtained by making use of polarized measurements and (b) the rotational diffusion constants and geometrical factors associated with the different anisotropy decay components can be uniquely determined and assigned to each species. The geometrical factors are determined by the absorption and emission transitions in the two rotating species. For spherical rotors, these factors depend directly on the relative orientations of the transition moments, while for cylindrically symmetric rotors they depend on the orientations with respect to each other and to the symmetry axis. (C) 2004 American Institute of Physics.
Notes: Transnatl Univ Limburg, Sch Life Sci, Limburgs Univ Centrum, Biomed Onderzoeksinst, B-3590 Diepenbeek, Belgium. Univ Warmia & Masuria Olsztyn, Dept Phys & Comp Methods, PL-10561 Olsztyn, Poland. Univ London Kings Coll, GKT Sch Biomed Sci, Randall Div Cell & Mol Biophys, London SE1 1UL, England. Katholieke Univ Leuven, Dept Chem, B-3001 Heverlee, Belgium. Nicholas Copernicus Univ, Aleksander Jablonski Inst Phys, PL-87100 Torun, Poland. Christie Hosp NHS Trust, Paterson Inst Canc Res, Manchester M20 4BX, Lancs, England.Ameloot, M, Transnatl Univ Limburg, Sch Life Sci, Limburgs Univ Centrum, Biomed Onderzoeksinst, B-3590 Diepenbeek, Belgium.marcel.ameloot@luc.ac.be
Document URI: http://hdl.handle.net/1942/2317
ISSN: 0021-9606
e-ISSN: 1089-7690
DOI: 10.1063/1.1798972
ISI #: 000224456500035
Category: A1
Type: Journal Contribution
Validations: ecoom 2005
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

12
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

12
checked on May 1, 2024

Page view(s)

66
checked on May 30, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.