Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/23265
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | NASSIRI, Vahid | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | VERBEKE, Geert | - |
dc.date.accessioned | 2017-02-28T12:52:14Z | - |
dc.date.available | 2017-02-28T12:52:14Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Smari, W.W. (Ed.). 2016 International Conference on High Performance Computing & Simulation (HPCS), IEEE,p. 736-742 | - |
dc.identifier.isbn | 9781509020881 | - |
dc.identifier.uri | http://hdl.handle.net/1942/23265 | - |
dc.description.abstract | Finite Information Limit (FIL) variance-covariance structures for hierarchical data are introduced and examined: for such data, it is often possible to analyze only a sometimes very small subset, leading to considerable computation time gain, with almost no efficiency loss. A central example is compound-symmetry. A simple approach is proposed to detect this property in a given dataset. | - |
dc.language.iso | en | - |
dc.publisher | IEEE | - |
dc.rights | ©2016 IEEE | - |
dc.subject.other | Compound-symmetry; Correlated Data; Data sub-sampling; Fast and parallel computation | - |
dc.subject.other | fast and parallel computation; compound-symmetry; correlated data; data subsampling | - |
dc.title | Finite Information Limit Variance-covariance Structures: Is the Entire Dataset Needed for Analysis? | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.authors | Smari, W.W. | - |
local.bibliographicCitation.conferencedate | July 18-22, 2016 | - |
local.bibliographicCitation.conferencename | 14th International Conference on High Performance Computing & Simulation (HPCS) | - |
local.bibliographicCitation.conferenceplace | Innsbruck, Austria | - |
dc.identifier.epage | 742 | - |
dc.identifier.spage | 736 | - |
local.format.pages | 7 | - |
local.bibliographicCitation.jcat | C1 | - |
dc.description.notes | [Nassiri, Vahid; Verbeke, Geert] Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium. [Molenberghs, Geert] Univ Hasselt, I BioStat, Hasselt, Belgium. [Molenberghs, Geert] Katholieke Univ Leuven, Leuven, Belgium. [Verbeke, Geert] Univ Hasselt, Hasselt, Belgium. | - |
local.publisher.place | New York | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
dc.identifier.doi | 10.1109/HPCSim.2016.7568408 | - |
dc.identifier.isi | 000389590600100 | - |
local.bibliographicCitation.btitle | 2016 International Conference on High Performance Computing & Simulation (HPCS) | - |
item.fulltext | With Fulltext | - |
item.contributor | NASSIRI, Vahid | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | VERBEKE, Geert | - |
item.fullcitation | NASSIRI, Vahid; MOLENBERGHS, Geert & VERBEKE, Geert (2016) Finite Information Limit Variance-covariance Structures: Is the Entire Dataset Needed for Analysis?. In: Smari, W.W. (Ed.). 2016 International Conference on High Performance Computing & Simulation (HPCS), IEEE,p. 736-742. | - |
item.accessRights | Restricted Access | - |
item.validation | ecoom 2018 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1109@hpcsim.2016.7568408.pdf Restricted Access | Published version | 459.95 kB | Adobe PDF | View/Open Request a copy |
Finite Information Limit Variance-covariance Structures Is the Entire Dataset Needed for Analysis.pdf Restricted Access | Peer-reviewed author version | 459.95 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.