Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGijbels, Irène-
dc.contributor.authorIBRAHIM, Mohammed Abdulkerim-
dc.contributor.authorVERHASSELT, Anneleen-
dc.date.accessioned2017-03-22T10:35:29Z-
dc.date.available2017-03-22T10:35:29Z-
dc.date.issued2017-
dc.identifier.citationJournal of nonparametric statistics, 29 (2), p. 391-406-
dc.identifier.issn1048-5252-
dc.identifier.urihttp://hdl.handle.net/1942/23410-
dc.description.abstractThe interest is in regression quantiles in varying coefficient models for analyzing longitudinal data. The coefficients are allowed to vary with time, and the error variance (the variability function) varies with the covariates to allow for heteroscedasticity. The functional coefficients are estimated using penalized splines (P-splines), not requiring specification of the error distribution. A likelihood-ratio-type test is considered to test the shape (constancy, monotonicity and/or convexity) of the functional coefficients. Further, testing procedures based on L1-norm, L2-norm and L∞-norm of the differences of the P-splines coefficients are considered to test for constant functional coefficients. These norm based tests perform better than the likelihood-ratio-type test in our simulation study. An extreme value test for testing monotonicity or convexity, also performs better than the likelihood-ratio-type test. The likelihood-ratio-type test is, however, useful when testing the shape of the coeffi- cients in signal and in variability function simultaneously. A real data example demonstrates the testing procedures.-
dc.description.sponsorshipThe authors gratefully acknowledge support from the IAP Research Network P7/06 of the Belgian State (Belgian Science Policy). I. Gijbels acknowledges support from the KU Leuven Research Council (GOA/12/014). A. Verhasselt acknowledges support from the The authors gratefully acknowledge support from the IAP Research Network P7/06 of the Belgian State (Belgian Science Policy). I. Gijbels acknowledges support from the KU Leuven Research Council (GOA/12/014). A. Verhasselt acknowledges support from the Fonds Wetenschappelijk Onderzoek (FWO) research grant 1518917N. M.A. Ibrahim and A. Verhasselt acknowledge support from the Special Research Fund (BOF) of Hasselt University [14NO6VHAA]. The infrastructure of the VSC-Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government - department EWI, was used for the simulations.-
dc.language.isoen-
dc.rights© American Statistical Association and Taylor & Francis 2017-
dc.subject.otherheteroscedasticity; likelihood-ratio-test; qualitative shape testing; quantile regression; varying coefficient models-
dc.titleShape testing in quantile varying coefficient models with heteroscedastic error-
dc.typeJournal Contribution-
dc.identifier.epage406-
dc.identifier.issue2-
dc.identifier.spage391-
dc.identifier.volume29-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notesVerhasselt, A (reprint author), Univ Hasselt, I Biostat, Diepenbeek, Belgium. anneleen.verhasselt@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeVSC-
dc.identifier.doi10.1080/10485252.2017.1303066-
dc.identifier.isi000405400300012-
item.validationecoom 2018-
item.contributorGijbels, Irène-
item.contributorIBRAHIM, Mohammed Abdulkerim-
item.contributorVERHASSELT, Anneleen-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationGijbels, Irène; IBRAHIM, Mohammed Abdulkerim & VERHASSELT, Anneleen (2017) Shape testing in quantile varying coefficient models with heteroscedastic error. In: Journal of nonparametric statistics, 29 (2), p. 391-406.-
crisitem.journal.issn1048-5252-
crisitem.journal.eissn1029-0311-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
GijbelsIbrahimVerhasselt revision1.pdfPeer-reviewed author version399.45 kBAdobe PDFView/Open
shape.pdf
  Restricted Access
Published version1.46 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.