Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23469
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJIMENEZ MONROY, Kathia-
dc.contributor.authorRenaud, Nicolas-
dc.contributor.authorDRIJKONINGEN, Jeroen-
dc.contributor.authorCORTENS, David-
dc.contributor.authorSchouteden, Koen-
dc.contributor.authorvan Haesendonck, Christian-
dc.contributor.authorGUEDENS, Wanda-
dc.contributor.authorMANCA, Jean-
dc.contributor.authorSiebbeles, Laurens D. A.-
dc.contributor.authorGrozema, Ferdinand C.-
dc.contributor.authorWAGNER, Patrick-
dc.date.accessioned2017-04-19T14:14:53Z-
dc.date.available2017-04-19T14:14:53Z-
dc.date.issued2017-
dc.identifier.citationThe journal of physical chemistry. A, 121(6), p. 1182-1188-
dc.identifier.issn1089-5639-
dc.identifier.urihttp://hdl.handle.net/1942/23469-
dc.description.abstractDetermining the mechanism of charge transport through native DNA remains a challenge as different factors such as measuring conditions, molecule conformations, and choice of technique can significantly affect the final results. In this contribution, we have used a new approach to measure current flowing through isolated double-stranded DNA molecules, using fullerene groups to anchor the DNA to a gold substrate. Measurements were performed at room temperature in an inert environment using a conductive AFM technique. It is shown that the π-stacked B-DNA structure is conserved on depositing the DNA. As a result, currents in the nanoampere range were obtained for voltages ranging between ±1 V. These experimental results are supported by a theoretical model that suggests that a multistep hopping mechanism between delocalized domains is responsible for the long-range current flow through this specific type of DNA.-
dc.description.sponsorshipThis project was funded by the Special Research Funds (BOF) of Hasselt University. The authors thank Dr. Patricia Losada-Perez and Dr. Alexander Volodin for fruitful discussions and Profs. Marlies K. Van Bael and Hans-Gerd Boyen for providing access to their experimental equipment.-
dc.language.isoen-
dc.rightsThis is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.-
dc.titleHigh Electronic Conductance through Double-Helix DNA Molecules with Fullerene Anchoring Groups-
dc.typeJournal Contribution-
dc.identifier.epage1188-
dc.identifier.issue6-
dc.identifier.spage1182-
dc.identifier.volume121-
local.bibliographicCitation.jcatA1-
dc.description.notesJimenez-Monroy, KL (reprint author), Hasselt Univ, IMO IMOMEC, Campus Diepenbeek,Wetenschapspk 1, B-3590 Diepenbeek, Belgium. jimenezmonroy.kathia@gmail.com; n.renaud@tudelft.nl-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acs.jpca.7b00348-
dc.identifier.isi000394482500003-
item.fullcitationJIMENEZ MONROY, Kathia; Renaud, Nicolas; DRIJKONINGEN, Jeroen; CORTENS, David; Schouteden, Koen; van Haesendonck, Christian; GUEDENS, Wanda; MANCA, Jean; Siebbeles, Laurens D. A.; Grozema, Ferdinand C. & WAGNER, Patrick (2017) High Electronic Conductance through Double-Helix DNA Molecules with Fullerene Anchoring Groups. In: The journal of physical chemistry. A, 121(6), p. 1182-1188.-
item.fulltextWith Fulltext-
item.validationecoom 2018-
item.contributorJIMENEZ MONROY, Kathia-
item.contributorRenaud, Nicolas-
item.contributorDRIJKONINGEN, Jeroen-
item.contributorCORTENS, David-
item.contributorSchouteden, Koen-
item.contributorvan Haesendonck, Christian-
item.contributorGUEDENS, Wanda-
item.contributorMANCA, Jean-
item.contributorSiebbeles, Laurens D. A.-
item.contributorGrozema, Ferdinand C.-
item.contributorWAGNER, Patrick-
item.accessRightsOpen Access-
crisitem.journal.issn1089-5639-
crisitem.journal.eissn1520-5215-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Artikel_Kathia_J.Phys.Chem_2017.pdfPublished version2.43 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

8
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

25
checked on May 8, 2024

Page view(s)

66
checked on Sep 7, 2022

Download(s)

158
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.