Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23469
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJIMENEZ MONROY, Kathia-
dc.contributor.authorRenaud, Nicolas-
dc.contributor.authorDRIJKONINGEN, Jeroen-
dc.contributor.authorCORTENS, David-
dc.contributor.authorSchouteden, Koen-
dc.contributor.authorvan Haesendonck, Christian-
dc.contributor.authorGUEDENS, Wanda-
dc.contributor.authorMANCA, Jean-
dc.contributor.authorSiebbeles, Laurens D. A.-
dc.contributor.authorGrozema, Ferdinand C.-
dc.contributor.authorWAGNER, Patrick-
dc.date.accessioned2017-04-19T14:14:53Z-
dc.date.available2017-04-19T14:14:53Z-
dc.date.issued2017-
dc.identifier.citationThe journal of physical chemistry. A, 121(6), p. 1182-1188-
dc.identifier.issn1089-5639-
dc.identifier.urihttp://hdl.handle.net/1942/23469-
dc.description.abstractDetermining the mechanism of charge transport through native DNA remains a challenge as different factors such as measuring conditions, molecule conformations, and choice of technique can significantly affect the final results. In this contribution, we have used a new approach to measure current flowing through isolated double-stranded DNA molecules, using fullerene groups to anchor the DNA to a gold substrate. Measurements were performed at room temperature in an inert environment using a conductive AFM technique. It is shown that the π-stacked B-DNA structure is conserved on depositing the DNA. As a result, currents in the nanoampere range were obtained for voltages ranging between ±1 V. These experimental results are supported by a theoretical model that suggests that a multistep hopping mechanism between delocalized domains is responsible for the long-range current flow through this specific type of DNA.-
dc.description.sponsorshipThis project was funded by the Special Research Funds (BOF) of Hasselt University. The authors thank Dr. Patricia Losada-Perez and Dr. Alexander Volodin for fruitful discussions and Profs. Marlies K. Van Bael and Hans-Gerd Boyen for providing access to their experimental equipment.-
dc.language.isoen-
dc.rightsThis is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.-
dc.titleHigh Electronic Conductance through Double-Helix DNA Molecules with Fullerene Anchoring Groups-
dc.typeJournal Contribution-
dc.identifier.epage1188-
dc.identifier.issue6-
dc.identifier.spage1182-
dc.identifier.volume121-
local.bibliographicCitation.jcatA1-
dc.description.notesJimenez-Monroy, KL (reprint author), Hasselt Univ, IMO IMOMEC, Campus Diepenbeek,Wetenschapspk 1, B-3590 Diepenbeek, Belgium. jimenezmonroy.kathia@gmail.com; n.renaud@tudelft.nl-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acs.jpca.7b00348-
dc.identifier.isi000394482500003-
item.fullcitationJIMENEZ MONROY, Kathia; Renaud, Nicolas; DRIJKONINGEN, Jeroen; CORTENS, David; Schouteden, Koen; van Haesendonck, Christian; GUEDENS, Wanda; MANCA, Jean; Siebbeles, Laurens D. A.; Grozema, Ferdinand C. & WAGNER, Patrick (2017) High Electronic Conductance through Double-Helix DNA Molecules with Fullerene Anchoring Groups. In: The journal of physical chemistry. A, 121(6), p. 1182-1188.-
item.accessRightsOpen Access-
item.contributorJIMENEZ MONROY, Kathia-
item.contributorRenaud, Nicolas-
item.contributorDRIJKONINGEN, Jeroen-
item.contributorCORTENS, David-
item.contributorSchouteden, Koen-
item.contributorvan Haesendonck, Christian-
item.contributorGUEDENS, Wanda-
item.contributorMANCA, Jean-
item.contributorSiebbeles, Laurens D. A.-
item.contributorGrozema, Ferdinand C.-
item.contributorWAGNER, Patrick-
item.validationecoom 2018-
item.fulltextWith Fulltext-
crisitem.journal.issn1089-5639-
crisitem.journal.eissn1520-5215-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Artikel_Kathia_J.Phys.Chem_2017.pdfPublished version2.43 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.