Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23691
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Peng-
dc.contributor.authorJoberty, Gerard-
dc.contributor.authorBuist, Arjan-
dc.contributor.authorVANOOSTHUYSE, Alexandre-
dc.contributor.authorSTANCU, Ilie Cosmin-
dc.contributor.authorVasconcelos, Bruno-
dc.contributor.authorPierrot, Nathalie-
dc.contributor.authorFaelth-Savitski, Maria-
dc.contributor.authorKienlen-Campard, Pascal-
dc.contributor.authorOctave, Jean-Noël-
dc.contributor.authorBantscheff, Marcus-
dc.contributor.authorDrewes, Gerard-
dc.contributor.authorMoechars, Diederik-
dc.contributor.authorDEWACHTER, Ilse-
dc.date.accessioned2017-05-17T08:07:56Z-
dc.date.available2017-05-17T08:07:56Z-
dc.date.issued2017-
dc.identifier.citationACTA NEUROPATHOLOGICA, 133(5), p. 731-749-
dc.identifier.issn0001-6322-
dc.identifier.urihttp://hdl.handle.net/1942/23691-
dc.description.abstractDysregulated proteostasis is a key feature of a variety of neurodegenerative disorders. In Alzheimer's disease (AD), progression of symptoms closely correlates with spatiotemporal progression of Tau aggregation, with "early" oligomeric Tau forms rather than mature neurofibrillary tangles (NFTs) considered to be pathogenetic culprits. The ubiquitin-proteasome system (UPS) controls degradation of soluble normal and abnormally folded cytosolic proteins. The UPS is affected in AD and is identified by genomewide association study (GWAS) as a risk pathway for AD. The UPS is determined by balanced regulation of ubiquitination and deubiquitination. In this work, we performed isobaric tags for relative and absolute quantitation (iTRAQ)-based Tau interactome mapping to gain unbiased insight into Tau pathophysiology and to identify novel Tau-directed therapeutic targets. Focusing on Tau deubiquitination, we here identify Otub1 as a Tau-deubiquitinating enzyme. Otub1 directly affected Lys48-linked Tau deubiquitination, impairing Tau degradation, dependent on its catalytically active cysteine, but independent of its noncanonical pathway modulated by its N-terminal domain in primary neurons. Otub1 strongly increased AT8-positive Tau and oligomeric Tau forms and increased Tau-seeded Tau aggregation in primary neurons. Finally, we demonstrated that expression of Otub1 but not its catalytically inactive form induced pathological Tau forms after 2 months in Tau transgenic mice in vivo, including AT8-positive Tau and oligomeric Tau forms. Taken together, we here identified Otub1 as a Tau deubiquitinase in vitro and in vivo, involved in formation of pathological Tau forms, including small soluble oligomeric forms. Otub1 and particularly Otub1 inhibitors, currently under development for cancer therapies, may therefore yield interesting novel therapeutic avenues for Tauopathies and AD.-
dc.description.sponsorshipThis work was supported by the Belgian Fonds National pour la Recherche Scientifique-Fonds de la Recherche Scientifique (FNRS-FRS; Qualified Researcher, Impulse Financing, Research Credits), by Interuniversity Attraction Poles Programme-Belgian State-Belgian Science Policy, by the Belgian Fonds de la Recherche Scientifique Medicale, by the Queen Elisabeth Medical Foundation of Belgium (QEMF-FMRE), by the Stichting Alzheimer Onderzoek (SAO), by the Institute for the Promotion of Innovation by Science and Technology (IWT) in Flanders (IWT O&O, currently FWO), Belgium, and by Stellar funding of Janssen Research Foundation. We would like to thank Markus Boesche, Carola Doce, Frank Fischer, and Melanie Jundt for their technical expertise.-
dc.language.isoen-
dc.rightsCopyright information: © The Author(s) 2017 Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.-
dc.subject.otherAlzheimer’s disease; interactome mapping; Otub1; Tau; Tau oligomerization; Tau pathology; ubiquitination-
dc.titleTau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo-
dc.typeJournal Contribution-
dc.identifier.epage749-
dc.identifier.issue5-
dc.identifier.spage731-
dc.identifier.volume133-
local.bibliographicCitation.jcatA1-
dc.description.notesDewachter, I (reprint author), Catholic Univ Louvain, Inst Neurosci, Alzheimer Dementia Grp, B-1200 Brussels, Belgium.ilse.dewachter@uclouvain.be-
dc.relation.referencesReferences 1. Babu JR, Geetha T, Wooten MW (2005) Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem 94:192–203. doi:10.1111/j.1471-4159.2005.03181.x 2. Balakirev MY, Tcherniuk SO, Jaquinod M, Chroboczek J (2003) Otubains: a new family of cysteine proteases in the ubiqui- tin pathway. EMBO Rep 4:517–522. doi:10.1038/sj.embor. embor824 3. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044. doi:10.1038/nbt1328 4. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G, Boe- sche M, Delling M, Dumpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neubauer G, Ramsden NG, Drewes G (2011) Chem- oproteomics pro ling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29:255–265. doi:10.1038/nbt.1759 5. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a criti- cal review. Anal Bioanal Chem 389:1017–1031. doi:10.1007/ s00216-007-1486-6 6. Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, Wszolek Z, Ashe K, Knight J, Dickson D, Andorfer C, Rosen- berry TL, Lewis J, Hutton M, Janus C (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 27:3650–3662. doi:10.1523/ JNEUROSCI.0587-07.2007 7. Berke SJ, Paulson HL (2003) Protein aggregation and the ubiqui- tin proteasome pathway: gaining the UPPer hand on neurodegen- eration. Curr Opin Genet Dev 13:253–261 8. Blair LJ, Nordhues BA, Hill SE, Scaglione KM, O’Leary JC 3rd, Fontaine SN, Breydo L, Zhang B, Li P, Wang L, Cotman C, Paul- son HL, Muschol M, Uversky VN, Klengel T, Binder EB, Kayed R, Golde TE, Berchtold N, Dickey CA (2013) Accelerated neu- rodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 123:4158–4169. doi:10.1172/JCI69003 9. Braak H, Braak E (1991) Neuropathological stageing of Alzhei- mer-related changes. Acta Neuropathol 82:239–259 10. Brajenovic M, Joberty G, Kuster B, Bouwmeester T, Drewes G (2004) Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem 279:12804–12811. doi:10.1074/jbc.M312171200 11. Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Kayed R (2014) Speci c targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40(Suppl 1):S97–S111. doi:10.3233/ JAD-132477 12. Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Lasa- gna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD, Dineley KT, Jackson GR, Kayed R (2014) Passive immuniza- tion with Tau oligomer monoclonal antibody reverses tauopa- thy phenotypes without affecting hyperphosphorylated neu- ro brillary tangles. J Neurosci 34:4260–4272. doi:10.1523/ JNEUROSCI.3192-13.2014 13. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ (2006) Alzheimer disease-speci c conformation of hyperphosphoryl- ated paired helical lament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281:10825–10838. doi:10.1074/jbc.M512786200 14. David DC, Lay eld R, Serpell L, Narain Y, Goedert M, Spillan- tini MG (2002) Proteasomal degradation of tau protein. J Neuro- chem 83:176–185 15. Deger JM, Gerson JE, Kayed R (2015) The interrelationship of proteasome impairment and oligomeric intermediates in neuro- degeneration. Aging Cell 14:715–724. doi:10.1111/acel.12359 16. Dickey CA, Yue M, Lin WL, Dickson DW, Dunmore JH, Lee WC, Zehr C, West G, Cao S, Clark AM, Caldwell GA, Cald- well KA, Eckman C, Patterson C, Hutton M, Petrucelli L (2006) Deletion of the ubiquitin ligase CHIP leads to the accumula- tion, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26:6985–6996. doi:10.1523/JNEUROSCI.0746-06.200617. Edelmann MJ, Iphofer A, Akutsu M, Altun M, di Gleria K, Kramer HB, Fiebiger E, Dhe-Paganon S, Kessler BM (2009) Structural basis and speci city of human otubain 1-medi- ated deubiquitination. Biochem J 418:379–390. doi:10.1042/ BJ20081318 18. Eroglu B, Moskophidis D, Mivechi NF (2010) Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accu- mulation of insoluble amyloid beta. Mol Cell Biol 30:4626– 4643. doi:10.1128/MCB.01493-09 19. Flach K, Ramminger E, Hilbrich I, Arsalan-Werner A, Albrecht F, Herrmann L, Goedert M, Arendt T, Holzer M (2014) Axotro- phin/MARCH7 acts as an E3 ubiquitin ligase and ubiquitinates tau protein in vitro impairing microtubule binding. Biochim Bio- phys Acta 1842:1527–1538. doi:10.1016/j.bbadis.2014.05.029 20. Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500 21. Goldbaum O, Oppermann M, Handschuh M, Dabir D, Zhang B, Forman MS, Trojanowski JQ, Lee VM, Richter-Landsberg C (2003) Proteasome inhibition stabilizes tau inclusions in oligo- dendroglial cells that occur after treatment with okadaic acid. J Neurosci 23:8872–8880 22. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899. doi:10.1038/nature02263 23. Goncharov T, Niessen K, de Almagro MC, Izrael-Tomasevic A, Fedorova AV, Varfolomeev E, Arnott D, Deshayes K, Kirkpatrick DS, Vucic D (2013) OTUB1 modulates c-IAP1 stability to regu- late signalling pathways. EMBO J 32:1103–1114. doi:10.1038/ emboj.2013.62 24. Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286:15317–15331. doi:10.1074/jbc.M110.209296 25. Han DH, Na HK, Choi WH, Lee JH, Kim YK, Won C, Lee SH, Kim KP, Kuret J, Min DH, Lee MJ (2014) Direct cellular deliv- ery of human proteasomes to delay tau aggregation. Nat Com- mun 5:5633. doi:10.1038/ncomms6633 26. Herhaus L, Al-Salihi M, Macartney T, Weidlich S, Sapkota GP (2013) OTUB1 enhances TGFbeta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat Com- mun 4:2519. doi:10.1038/ncomms3519 27. Huber KV, Olek KM, Muller AC, Tan CS, Bennett KL, Colinge J, Superti-Furga G (2015) Proteome-wide drug and metabolite interaction mapping by thermal-stability pro ling. Nat Methods 12:1055–1057. doi:10.1038/nmeth.3590 28. Ihara Y, Morishima-Kawashima M, Nixon R (2012) The ubiq- uitin-proteasome system and the autophagic-lysosomal sys- tem in Alzheimer disease. Cold Spring Harb Perspect Med 2. doi:10.1101/cshperspect.a006361 29. Irmler M, Gentier RJ, Dennissen FJ, Schulz H, Bolle I, Holter SM, Kallnik M, Cheng JJ, Klingenspor M, Rozman J, Ehrhardt N, Hermes DJ, Gailus-Durner V, Fuchs H, Hrabe de Ange- lis M, Meyer HE, Hopkins DA, Van Leeuwen FW, Beckers J (2012) Long-term proteasomal inhibition in transgenic mice by UBB(+1) expression results in dysfunction of central respira- tion control reminiscent of brainstem neuropathology in Alz- heimer patients. Acta Neuropathol 124:187–197. doi:10.1007/ s00401-012-1003-7 30. Jinwal UK, O’Leary JC 3rd, Borysov SI, Jones JR, Li Q, Koren J 3rd, Abisambra JF, Vestal GD, Lawson LY, Johnson AG, Blair LJ, Jin Y, Miyata Y, Gestwicki JE, Dickey CA (2010) Hsc70 rap- idly engages tau after microtubule destabilization. J Biol Chem 285:16798–16805. doi:10.1074/jbc.M110.113753 31. Juang YC, Landry MC, Sanches M, Vittal V, Leung CC, Cec- carelli DF, Mateo AR, Pruneda JN, Mao DY, Szilard RK,Orlicky S, Munro M, Brzovic PS, Klevit RE, Sicheri F, Duro- cher D (2012) OTUB1 co-opts Lys48-linked ubiquitin recogni- tion to suppress E2 enzyme function. Mol Cell 45:384–397. doi:10.1016/j.molcel.2012.01.011 32. Karunarathna U, Kongsema M, Zona S, Gong C, Cabrera E, Gomes AR, Man EP, Khongkow P, Tsang JW, Khoo US, Medema RH, Freire R, Lam EW (2016) OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resist- ance. Oncogene 35:1433–1444. doi:10.1038/onc.2015.208 33. Kayed R, Jackson GR (2009) Pre lament tau species as poten- tial targets for immunotherapy for Alzheimer disease and related disorders. Curr Opin Immunol 21:359–363. doi:10.1016/j. coi.2009.05.001 34. Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibi- tion by paired helical lament-tau in brains of patients with Alz- heimer’s disease. J Neurochem 85:115–122 35. Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Ageing Res Rev 1:279–293 36. Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiq- uitin-mediated recognition and beyond. Nat Cell Biol 12:836– 841. doi:10.1038/ncb0910-836 37. Kruger L, Mandelkow EM (2016) Tau neurotoxicity and rescue in animal models of human Tauopathies. Curr Opin Neurobiol 36:52–58. doi:10.1016/j.conb.2015.09.004 38. Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Lay eld R (2000) Inhibition of the ubiquitin-pro- teasome system in Alzheimer’s disease. Proc Natl Acad Sci USA 97:9902–9906. doi:10.1073/pnas.170173897 39. Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muoz MJ, Jackson GR, Kayed R (2010) Preparation and characterization of neurotoxic tau oligomers. Biochemistry 49:10039–10041. doi:10.1021/bi1016233 40. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarm- iento J, Troncoso J, Jackson GR, Kayed R (2012) Identi cation of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26:1946–1959. doi:10.1096/fj.11-199851 41. Lee G, Neve RL, Kosik KS (1989) The microtubule binding domain of tau protein. Neuron 2:1615–1624 42. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymero- poulos MH (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452. doi:10.1038/26652 43. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477 44. Li S, Zheng H, Mao AP, Zhong B, Li Y, Liu Y, Gao Y, Ran Y, Tien P, Shu HB (2010) Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem 285:4291–4297. doi:10.1074/jbc. M109.074971 45. Lindsten K, de Vrij FM, Verhoef LG, Fischer DF, van Leeuwen FW, Hol EM, Masucci MG, Dantuma NP (2002) Mutant ubiq- uitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol 157:417–427. doi:10.1083/jcb.200111034 46. Luo HB, Xia YY, Shu XJ, Liu ZC, Feng Y, Liu XH, Yu G, Yin G, Xiong YS, Zeng K, Jiang J, Ye K, Wang XC, Wang JZ (2014) SUMOylation at K340 inhibits tau degradation through deregu- lating its phosphorylation and ubiquitination. Proc Natl Acad Sci USA 111:16586–16591. doi:10.1073/pnas.1417548111 47. Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. EMBO J 26:4546–4554. doi:10.1038/sj.emboj.760187848. Messick TE, Russell NS, Iwata AJ, Sarachan KL, Shiekhattar R, Shanks JR, Reyes-Turcu FE, Wilkinson KD, Marmorstein R (2008) Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. J Biol Chem 283:11038–11049. doi:10.1074/jbc.M704398200 49. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical laments in Alzheimer’s disease. Science 235:1641–1644 50. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y (1993) Ubiquitin is conjugated with amino- terminally processed tau in paired helical laments. Neuron 10:1151–1160 51. Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL, Mucke L (2015) Tau post-translational modi - cations in wild-type and human amyloid precursor protein trans- genic mice. Nat Neurosci 18:1183–1189. doi:10.1038/nn.4067 52. Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH, Goldberg AL, Duff KE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 22:46–53. doi:10.1038/nm.4011 53. Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras AC, Natsume T, Suda T, Durocher D (2010) Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466:941–946. doi:10.1038/nature09297 54. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332. doi:10.1016/j.neuron.2004.07.003 55. Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked poly- ubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4:85–87 56. Paine S, Bedford L, Thorpe JR, Mayer RJ, Cavey JR, Bajaj N, Sheppard PW, Lowe J, Lay eld R (2009) Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration. Neurosci Lett 460:205–208. doi:10.1016/j.neulet.2009.05.074 57. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G, Kim J, Dillmann WH, Browne SE, Hall A, Voellmy R, Tsuboi Y, Dawson TM, Wolozin B, Hardy J, Hutton M (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714. doi:10.1093/hmg/ddh083 58. Reinhard FB, Eberhard D, Werner T, Franken H, Childs D, Doce C, Savitski MF, Huber W, Bantscheff M, Savitski MM, Drewes G (2015) Thermal proteome pro ling monitors ligand interac- tions with cellular membrane proteins. Nat Methods 12:1129– 1131. doi:10.1038/nmeth.3652 59. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced de cits in an Alzhei- mer’s disease mouse model. Science 316:750–754. doi:10.1126/ science.1141736 60. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenera- tive mouse model improves memory function. Science 309:476– 481. doi:10.1126/science.1113694 61. Sato Y, Yamagata A, Goto-Ito S, Kubota K, Miyamoto R, Nakada S, Fukai S (2012) Molecular basis of Lys-63-linked polyubiq- uitination inhibition by the interaction between human deubiq- uitinating enzyme OTUB1 and ubiquitin-conjugating enzyme UBC13. J Biol Chem 287:25860–25868. doi:10.1074/jbc. M112.36475262. Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, Eberhard D, Martinez Molina D, Jafari R, Dovega RB, Klaeger S, Kuster B, Nordlund P, Bantscheff M, Drewes G (2014) Track- ing cancer drugs in living cells by thermal pro ling of the pro- teome. Science 346:1255784. doi:10.1126/science.1255784 63. Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP- Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876. doi:10.1074/jbc. M305838200 64. Stancu IC, Ris L, Vasconcelos B, Marinangeli C, Goeminne L, Laporte V, Haylani LE, Couturier J, Schakman O, Gailly P, Pierrot N, Kienlen-Campard P, Octave JN, Dewachter I (2014) Tauopathy contributes to synaptic and cognitive de cits in a murine model for Alzheimer’s disease. FASEB J 28:2620–2631. doi:10.1096/fj.13-246702 65. Stancu IC, Vasconcelos B, Ris L, Wang P, Villers A, Peeraer E, Buist A, Terwel D, Baatsen P, Oyelami T, Pierrot N, Cas- teels C, Bormans G, Kienlen-Campard P, Octave JN, Moe- chars D, Dewachter I (2015) Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in Tau transgenic mice. Acta Neuropathol 129:875–894. doi:10.1007/ s00401-015-1413-4 66. Sun XX, Challagundla KB, Dai MS (2012) Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otu- bain 1. EMBO J 31:576–592. doi:10.1038/emboj.2011.434 67. Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E, D’Hooge R, Alzheimer C, Mandelkow EM (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in trans- genic mice after switching off the toxic Tau mutant. J Neurosci 31:2511–2525. doi:10.1523/JNEUROSCI.5245-10.2011 68. Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, Ho MW, Troncoso J, Gygi SP, Lee MK, Dawson VL, Daw- son TM, Lim KL (2008) Lysine 63-linked ubiquitination pro- motes the formation and autophagic clearance of protein inclu- sions associated with neurodegenerative diseases. Hum Mol Genet 17:431–439. doi:10.1093/hmg/ddm320 69. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta- deposition in the human brain and its relevance for the develop- ment of AD. Neurology 58:1791–1800 70. Van der Jeugd A, Hochgrafe K, Ahmed T, Decker JM, Sydow A, Hofmann A, Wu D, Messing L, Balschun D, D’Hooge R, Man- delkow EM (2012) Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta Neu- ropathol 123:787–805. doi:10.1007/s00401-012-0987-3 71. van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Koycu S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG, Peter J, Burbach H, Hol EM (1998) Frameshift mutants of beta amyloid precursor protein and ubiq- uitin-B in Alzheimer’s and Down patients. Science 279:242–247 72. Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P, Vanoosthuyse A, Van Kolen K, Verheyen A, Kienlen-Campard P, Octave JN, Baatsen P, Moechars D, Dewachter I (2016) Heterotypic seeding of Tau brillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol 131:549–569. doi:10.1007/s00401-015-1525-x 73. Verbitsky M, Yonan AL, Malleret G, Kandel ER, Gilliam TC, Pavlidis P (2004) Altered hippocampal transcript pro le accom- panies an age-related spatial memory de cit in mice. Learn Mem 11:253–260. doi:10.1101/lm.68204 74. Wang T, Yin L, Cooper EM, Lai MY, Dickey S, Pickart CM, Fushman D, Wilkinson KD, Cohen RE, Wolberger C (2009) Evidence for bidentate substrate binding as the basis for the K48 linkage speci city of otubain 1. J Mol Biol 386:1011–1023. doi:10.1016/j.jmb.2008.12.085 75. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862 76. Werner T, Becher I, Sweetman G, Doce C, Savitski MM, Bantscheff M (2012) High-resolution enabled TMT 8-plexing. Anal Chem 84:7188–7194. doi:10.1021/ac301553x 77. Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, Matunis MJ, Wolberger C (2013) E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol 20:1033–1039. doi:10.1038/nsmb.2655 78. Wiener R, Zhang X, Wang T, Wolberger C (2012) The mecha- nism of OTUB1-mediated inhibition of ubiquitination. Nature 483:618–622. doi:10.1038/nature10911 79. Witman GB, Cleveland DW, Weingarten MD, Kirschner MW (1976) Tubulin requires tau for growth onto microtubule initiat- ing sites. Proc Natl Acad Sci USA 73:4070–4074 80. Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J (2008) Essential role of seques- tosome 1/p62 in regulating accumulation of Lys63-ubiquit- inated proteins. J Biol Chem 283:6783–6789. doi:10.1074/jbc. M709496200 81. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Syn- apse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351. doi:10.1016/j. neuron.2007.01.010-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.classdsPublValOverrule/author_version_not_expected-
dc.identifier.doi10.1007/s00401-016-1663-9-
dc.identifier.isi000399397300004-
item.fullcitationWang, Peng; Joberty, Gerard; Buist, Arjan; VANOOSTHUYSE, Alexandre; STANCU, Ilie Cosmin; Vasconcelos, Bruno; Pierrot, Nathalie; Faelth-Savitski, Maria; Kienlen-Campard, Pascal; Octave, Jean-Noël; Bantscheff, Marcus; Drewes, Gerard; Moechars, Diederik & DEWACHTER, Ilse (2017) Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. In: ACTA NEUROPATHOLOGICA, 133(5), p. 731-749.-
item.validationecoom 2018-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.contributorWang, Peng-
item.contributorJoberty, Gerard-
item.contributorBuist, Arjan-
item.contributorVANOOSTHUYSE, Alexandre-
item.contributorSTANCU, Ilie Cosmin-
item.contributorVasconcelos, Bruno-
item.contributorPierrot, Nathalie-
item.contributorFaelth-Savitski, Maria-
item.contributorKienlen-Campard, Pascal-
item.contributorOctave, Jean-Noël-
item.contributorBantscheff, Marcus-
item.contributorDrewes, Gerard-
item.contributorMoechars, Diederik-
item.contributorDEWACHTER, Ilse-
crisitem.journal.issn0001-6322-
crisitem.journal.eissn1432-0533-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Wang_Dewachter_Acta Neuropathologica.pdfPublished version3.14 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

27
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

75
checked on Jul 18, 2024

Page view(s)

104
checked on Sep 7, 2022

Download(s)

110
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.