Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23729
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaselet, Bjorn-
dc.contributor.authorBELMANS, Niels-
dc.contributor.authorConinx, Emma-
dc.contributor.authorLowe, Donna-
dc.contributor.authorJanssen, Ann-
dc.contributor.authorMichaux, Arlette-
dc.contributor.authorTabury, Kevin-
dc.contributor.authorRaj, Kenneth-
dc.contributor.authorQuintens, Roel-
dc.contributor.authorBenotmane, Mohammed A-
dc.contributor.authorBaatout, Sarah-
dc.contributor.authorSonveaux, Pierre-
dc.contributor.authorAerts, An-
dc.date.accessioned2017-05-18T09:12:38Z-
dc.date.available2017-05-18T09:12:38Z-
dc.date.issued2017-
dc.identifier.citationFrontiers in Pharmacology, 8, p. 1-13 (Art N° 213)-
dc.identifier.issn1663-9812-
dc.identifier.urihttp://hdl.handle.net/1942/23729-
dc.description.abstractBackground and Purpose: Epidemiological data suggests an excess risk of cardiovascular disease (CVD) at low doses (0.05 and 0.1 Gy) of ionizing radiation (IR). Furthermore, the underlying biological and molecular mechanisms of radiation-induced CVD are still unclear. Because damage to the endothelium could be critical in IR-related CVD, this study aimed to identify the effects of radiation on immortalized endothelial cells in the context of atherosclerosis. Material and Methods: Microarrays and RT-qPCR were used to compare the response of endothelial cells irradiated with a single X-ray dose (0.05, 0.1, 0.5, 2 Gy) measured after various post-irradiation (repair) times (1 day, 7 days, 14 days). To consolidate and mechanistically support the endothelial cell response to X-ray exposure identified via microarray analysis, DNA repair signaling (γH2AX/TP53BP1-foci quantification), cell cycle progression (BrdU/7AAD flow cytometric analysis), cellular senescence (β-galactosidase assay with CPRG and IGFBP7 quantification) and pro-inflammatory status (IL6 and CCL2) was assessed. Results: Microarray results indicated persistent changes in cell cycle progression and inflammation. Cells underwent G1 arrest in a dose-dependent manner after high doses (0.5 and 2 Gy), which was compensated by increased proliferation after 1 week and almost normalized after 2 weeks. However, at this point irradiated cells showed an increased β-Gal activity and IGFBP7 secretion, indicative of premature senescence. The production of pro-inflammatory cytokines IL6 and CCL2 was increased at early time points. Conclusions: IR induces pro-atherosclerotic processes in endothelial cells in a dose-dependent manner. These findings give an incentive for further research on the shape of the dose-response curve, as we show that even low doses of IR can induce premature endothelial senescence at later time points. Furthermore, our findings on the time- and dose-dependent response regarding differentially expressed genes, cell cycle progression, inflammation and senescence bring novel insights into the underlying molecular mechanisms of the endothelial response to X-ray radiation. This may in turn lead to the development of risk-reducing strategies to prevent IR-induced CVD, such as the use of cell cycle modulators and anti-inflammatory drugs as radioprotectors and/or radiation mitigators.-
dc.description.sponsorshipThis work was funded by EU FP7 DoReMi network of excellence (grant #249689), EU FP7 project ProCardio (grant #295823), the Belgian Federal Agency for Nuclear Control FANC-AFCN (grant #CO-90-13-3289-00) and the Belgian Fonds National de la Recherche Scientifique (F.R.S.- FNRS). BB, NB, and EC are supported by a doctoral SCK center dot CEN grant. PS is a F.R.S.- FNRS Senior Research Associate. Funding sources had no role in study design, data collection analysis and interpretation, the writing and submission of the manuscript for publication.-
dc.language.isoen-
dc.rights© 2017 Baselet, Belmans, Coninx, Lowe, Janssen, Michaux, Tabury, Raj, Quintens, Benotmane, Baatout, Sonveaux and Aerts. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.-
dc.subject.otherX-irradiation; endothelial cells; cell cycle; inflammation-
dc.titleFunctional Gene Analysis Reveals Cell Cycle Changes and Inflammation in Endothelial Cells Irradiated with a Single X-ray Dose-
dc.typeJournal Contribution-
dc.identifier.epage13-
dc.identifier.spage1-
dc.identifier.volume8-
local.bibliographicCitation.jcatA1-
dc.description.notesAerts, A (reprint author), Belgian Nucl Res Ctr SCK CEN, Inst Environm Hlth & Safety, Radiobiol Unit, Mol, Belgium. an.aerts@sckcen.be-
dc.relation.referencesAgarwal, M. L., Agarwal, A., Taylor, W. R., and Stark, G. R. (1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 92, 8493–8497. doi: 10.1073/pnas.92.18.8493 PubMed Abstract | CrossRef Full Text | Google Scholar Aviner, R., Shenoy, A., Elroy-Stein, O., and Geiger, T. (2015). Uncovering hidden layers of cell cycle regulation through integrative multi-omic analysis. PLoS Genet. 11:e1005554. doi: 10.1371/journal.pgen.1005554 PubMed Abstract | CrossRef Full Text | Google Scholar Banáth, J. P., Klokov, D., MacPhail, S. H., Banuelos, C. A., and Olive, P. L. (2010). Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 10:4. doi: 10.1186/1471-2407-10-4 PubMed Abstract | CrossRef Full Text | Google Scholar Barish, G. D., Atkins, A. R., Downes, M., Olson, P., Chong, L. W., Nelson, M., et al. (2008). PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc. Natl. Acad. Sci. U.S.A. 105, 4271–4276. doi: 10.1073/pnas.0711875105 PubMed Abstract | CrossRef Full Text | Google Scholar Beck, R. E., Kim, L., Yue, N. J., Haffty, B. G., Khan, A. J., and Goyal, S. (2014). Treatment techniques to reduce cardiac irradiation for breast cancer patients treated with breast-conserving surgery and radiation therapy: a review. Front. Oncol. 4:327. doi: 10.3389/fonc.2014.00327 PubMed Abstract | CrossRef Full Text | Google Scholar Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300. Google Scholar Bernhard, E. J., Maity, A., Muschel, R. J., and McKenna, W. G. (1995). Effects of ionizing radiation on cell cycle progression. Rev. Radiat. Environ. Biophys. 34, 79–83. doi: 10.1007/BF01275210 PubMed Abstract | CrossRef Full Text | Google Scholar Bertoli, C., Skotheim, J. M., and de Bruin, R. A. (2013). Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14, 518–528. doi: 10.1038/nrm3629 PubMed Abstract | CrossRef Full Text | Google Scholar Bhattacharya, S., and Asaithamby, A. (2016). Ionizing radiation and heart risks. Semin. Cell Dev. Biol. 58, 14–25. doi: 10.1016/j.semcdb.2016.01.045 PubMed Abstract | CrossRef Full Text | Google Scholar Bolanos-Garcia, V. M., and Blundell, T. L. (2011). BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends Biochem. Sci. 36, 141–150. doi: 10.1016/j.tibs.2010.08.004 PubMed Abstract | CrossRef Full Text | Google Scholar Borghini, A., Gianicolo, E. A., Picano, E., and Andreassi, M. G. (2013). Ionizing radiation and atherosclerosis: current knowledge and future challenges. Atherosclerosis 230, 40–47. doi: 10.1016/j.atherosclerosis.2013.06.010 PubMed Abstract | CrossRef Full Text | Google Scholar Boring, L., Gosling, J., Cleary, M., and Charo, I. F. (1998). Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897. doi: 10.1038/29788 PubMed Abstract | CrossRef Full Text | Google Scholar Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., et al. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14:128. doi: 10.1186/1471-2105-14-128 PubMed Abstract | CrossRef Full Text | Google Scholar Collins, R. G., Velji, R., Guevara, N. V., Hicks, M. J., Chan, L., and Beaudet, A. L. (2000). P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med. 191, 189–194. doi: 10.1084/jem.191.1.189 PubMed Abstract | CrossRef Full Text | Google Scholar Darby, S. C., Cutter, D. J., Boerma, M., Constine, L. S., Fajardo, L. F., Kodama, K., et al. (2010). Radiation-related heart disease: current knowledge and future prospects. Int. J. Radiat. Oncol. Biol. Phys. 76, 656–665. doi: 10.1016/j.ijrobp.2009.09.064 PubMed Abstract | CrossRef Full Text | Google Scholar Darby, S. C., Ewertz, M., McGale, P., Bennet, A. M., Blom-Goldman, U., Bronnum, D., et al. (2013). Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 368, 987–998. doi: 10.1056/NEJMoa1209825 PubMed Abstract | CrossRef Full Text | Google Scholar Derynck, R., and Zhang, Y. E. (2003). Smad-depenent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577–584. doi: 10.1038/nature02006 PubMed Abstract | CrossRef Full Text | Google Scholar De Vos, W. H., Van Neste, L., Dieriks, B., Joss, G. H., and Van Oostveldt, P. (2010). High content image cytometry in the context of subnuclear organization. Cytometry A 77, 64–75. doi: 10.1002/cyto.a.20807 PubMed Abstract | CrossRef Full Text | Google Scholar Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363–9367. doi: 10.1073/pnas.92.20.9363 PubMed Abstract | CrossRef Full Text | Google Scholar Eden, E., Lipson, D., Yogev, S., and Yakhini, Z. (2007). Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 3:e39. doi: 10.1371/journal.pcbi.0030039 PubMed Abstract | CrossRef Full Text | Google Scholar Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48. doi: 10.1186/1471-2105-10-48 PubMed Abstract | CrossRef Full Text | Google Scholar Evangelou, K., Lougiakis, N., Rizou, S. V., Kotsinas, A., Kletsas, D., Muñoz-Espín, D., et al. (2017). Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16, 192–197. doi: 10.1111/acel.12545 PubMed Abstract | CrossRef Full Text | Google Scholar Fazel, R., Krumholz, H. M., Wang, Y., Ross, J. S., Chen, J., Ting, H. H., et al. (2009). Exposure to low-dose ionizing radiation from medical imaging procedures. N. Engl. J. Med. 361, 849–857. doi: 10.1056/NEJMoa0901249 PubMed Abstract | CrossRef Full Text | Google Scholar Fiuza, C., Bustin, M., Talwar, S., Tropea, M., Gerstenberger, E., Shelhamer, J. H., et al. (2003). Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101, 2652–2660. doi: 10.1182/blood-2002-05-1300 PubMed Abstract | CrossRef Full Text | Google Scholar Freund, A., Orjalo, A. V., Desprez, P. Y., and Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246. doi: 10.1016/j.molmed.2010.03.003 PubMed Abstract | CrossRef Full Text | Google Scholar Gallo, R. L., Dorschner, R. A., Takashima, S., Klagsbrun, M., Eriksson, E., and Bernfield, M. (1997). Endothelial cell surface alkaline phosphatase activity is induced by IL-6 released during wound repair. J. Invest. Dermatol. 109, 597–603. doi: 10.1111/1523-1747.ep12337529 PubMed Abstract | CrossRef Full Text | Google Scholar Georgakilas, A. G., Pavlopoulou, A., Louka, M., Nikitaki, Z., Vorgias, C. E., Bagos, P. G., et al. (2015). Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett. 368, 164–172. doi: 10.1016/j.canlet.2015.03.021 PubMed Abstract | CrossRef Full Text | Google Scholar Gerdes, J., Schwab, U., Lemke, H., and Stein, H. (1983). Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer 31, 13–20. doi: 10.1002/ijc.2910310104 PubMed Abstract | CrossRef Full Text | Google Scholar Gottfried, K.-L. D., Penn, G., and U. S. Nuclear Regulatory Commission (1996). Medical Use Program., and Institute of Medicine (U.S.). Committee for Review and Evaluation of the Medical Use Program of the Nuclear Regulatory Commission. Radiation in Medicine : a Need for Regulatory Reform. Washington, DC: National Academy Press. Hallahan, D. E., and Virudachalam, S. (1997a). Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation. Proc. Natl. Acad. Sci. U.S.A. 94, 6432–6437. doi: 10.1073/pnas.94.12.6432 PubMed Abstract | CrossRef Full Text | Google Scholar Hallahan, D. E., and Virudachalam, S. (1997b). Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung. Cancer Res. 57, 2096–2099. PubMed Abstract | Google Scholar Harrington, J. R. (2000). The role of MCP-1 in atherosclerosis. Stem Cells 18, 65–66. doi: 10.1634/stemcells.18-1-65 PubMed Abstract | CrossRef Full Text | Google Scholar Haubner, F., Leyh, M., Ohmann, E., Pohl, F., Prantl, L., and Gassner, H. G. (2013). Effects of external radiation in a co-culture model of endothelial cells and adipose-derived stem cells. Radiat. Oncol. 8:66. doi: 10.1186/1748-717X-8-66 PubMed Abstract | CrossRef Full Text | Google Scholar Hildebrandt, G. (2010). Non-cancer diseases and non-targeted effects. Mutat. Res. 687, 73–77. doi: 10.1016/j.mrfmmm.2010.01.007 PubMed Abstract | CrossRef Full Text | Google Scholar Hingorani, A. D., Cross, J., Kharbanda, R. K., Mullen, M. J., Bhagat, K., Taylor, M., et al. (2000). Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 102, 994–999. doi: 10.1161/01.CIR.102.9.994 PubMed Abstract | CrossRef Full Text | Google Scholar Hirase, T., and Node, K. (2012). Endothelial dysfunction as a cellular mechanism for vascular failure. Am. J. Physiol. Heart Circ. Physiol. 302, H499–H505. doi: 10.1152/ajpheart.00325.2011 PubMed Abstract | CrossRef Full Text | Google Scholar Hoving, S., Heeneman, S., Gijbels, M. J., Te Poele, J. A., Visser, N., Cleutjens, J., et al. (2012). Irradiation induces different inflammatory and thrombotic responses in carotid arteries of wildtype C57BL/6J and atherosclerosis-prone ApoE(-/-) mice. Radiother. Oncol. 105, 365–370. doi: 10.1016/j.radonc.2012.11.001 PubMed Abstract | CrossRef Full Text | Google Scholar Kempe, S., Kestler, H., Lasar, A., and Wirth, T. (2005). NF-kappaB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 33, 5308–5319. doi: 10.1093/nar/gki836 PubMed Abstract | CrossRef Full Text | Google Scholar Kleiner, R. E., Verma, P., Molloy, K. R., Chait, B. T., and Kapoor, T. M. (2015). Chemical proteomics reveals a gammaH2AX-53BP1 interaction in the DNA damage response. Nat. Chem. Biol. 11, 807–814. doi: 10.1038/nchembio.1908 PubMed Abstract | CrossRef Full Text | Google Scholar Kojima, H., Inoue, T., Kunimoto, H., and Nakajima, K. (2013). IL-6-STAT3 signaling and premature senescence. JAKSTAT 2:e25763. doi: 10.4161/jkst.25763 PubMed Abstract | CrossRef Full Text | Google Scholar Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97. doi: 10.1093/nar/gkw377 PubMed Abstract | CrossRef Full Text | Google Scholar Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature 358, 15–16. doi: 10.1038/358015a0 PubMed Abstract | CrossRef Full Text | Google Scholar Libby, P. (2002). Inflammation in atherosclerosis. Nature 420, 868–874. doi: 10.1038/nature01323 PubMed Abstract | CrossRef Full Text | Google Scholar Libby, P., Ridker, P. M., and Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325. doi: 10.1038/nature10146 PubMed Abstract | CrossRef Full Text | Google Scholar Little, M. P., Tawn, E. J., Tzoulaki, I., Wakeford, R., Hildebrandt, G., Paris, F., et al. (2008). A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat. Res. 169, 99–109. doi: 10.1667/RR1070.1 PubMed Abstract | CrossRef Full Text | Google Scholar Lowe, D., and Raj, K. (2014). Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression. Aging Cell 13, 900–910. doi: 10.1111/acel.12253 PubMed Abstract | CrossRef Full Text | Google Scholar Lusis, A. J. (2000). Atherosclerosis. Nature 407, 233–241. doi: 10.1093/nar/29.9.e45 PubMed Abstract | CrossRef Full Text | Google Scholar MacDonald, S. M., Jimenez, R., Paetzold, P., Adams, J., Beatty, J., DeLaney, T. F., et al. (2013). Proton radiotherapy for chest wall and regional lymphatic radiation; dose comparisons and treatment delivery. Radiat. Oncol. 8:71. doi: 10.1186/1748-717X-8-71 PubMed Abstract | CrossRef Full Text | Google Scholar Magné, N., Toillon, R. A., Bottero, V., Didelot, C., Houtte, P. V., Gerard, J. P., et al. (2006). NF-kappaB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett. 231, 158–168. doi: 10.1016/j.canlet.2005.01.022 PubMed Abstract | CrossRef Full Text | Google Scholar Minamino, T., Miyauchi, H., Yoshida, T., Ishida, Y., Yoshida, H., and Komuro, I. (2002). Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544. doi: 10.1161/01.CIR.0000013836.85741.17 PubMed Abstract | CrossRef Full Text | Google Scholar Morey, J. S., Ryan, J. C., and Van Dolah, F. M. (2006). Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol. Proced. Online 8, 175–193. doi: 10.1251/bpo126 PubMed Abstract | CrossRef Full Text | Google Scholar Nikitaki, Z., Nikolov, V., Mavragani, I. V., Mladenov, E., Mangelis, A., Laskaratou, D. A., et al. (2016). Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radic. Res. 50(Suppl 1), S64–S78. doi: 10.1080/10715762.2016.1232484 PubMed Abstract | CrossRef Full Text | Google Scholar Ngwa, W., Kumar, R., Sridhar, S., Korideck, H., Zygmanski, P., Cormack, R. A., et al. (2014). Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine 9, 1063–1082. doi: 10.2217/nnm.14.55 PubMed Abstract | CrossRef Full Text | Google Scholar Paoletti, R., Gotto, A. M. Jr., and Hajjar, D. P. (2004). Inflammation in atherosclerosis and implications for therapy. Circulation 109(23 Suppl. 1), III20–26. doi: 10.1161/01.cir.0000131514.71167.2e PubMed Abstract | CrossRef Full Text | Google Scholar Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:45. doi: 10.1093/nar/29.9.e45 PubMed Abstract | CrossRef Full Text | Google Scholar Piqueras, L., Reynolds, A. R., Hodivala-Dilke, K. M., Alfranca, A., Redondo, J. M., Hatae, T., et al. (2007). Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 27, 63–69. doi: 10.1161/01.ATV.0000250972.83623.61 PubMed Abstract | CrossRef Full Text | Google Scholar Raviraj, J., Bokkasam, V. K., Kumar, V. S., Reddy, U. S., and Suman, V. (2014). Radiosensitizers, radioprotectors, and radiation mitigators. Indian J. Dent. Res. 25, 83–90. doi: 10.4103/0970-9290.131142 PubMed Abstract | CrossRef Full Text | Google Scholar Rombouts, C., Aerts, A., Quintens, R., Baselet, B., El-Saghire, H., Harms-Ringdahl, M., et al. (2014). Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation. Int. J. Radiat. Biol. 90, 560–574. doi: 10.3109/09553002.2014.905724 PubMed Abstract | CrossRef Full Text | Google Scholar Rufini, A., Tucci, P., Celardo, I., and Melino, G. (2013). Senescence and aging: the critical roles of p53. Oncogene 32, 5129–5143. doi: 10.1038/onc.2012.640 PubMed Abstract | CrossRef Full Text | Google Scholar Schieffer, B., Selle, T., Hilfiker, A., Hilfiker-Kleiner, D., Grote, K., Tietge, U. J., et al. (2004). Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation 110, 3493–3500. doi: 10.1161/01.CIR.0000148135.08582.97 PubMed Abstract | CrossRef Full Text | Google Scholar Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. doi: 10.1038/nmeth.2019 PubMed Abstract | CrossRef Full Text | Google Scholar Schuett, H., Luchtefeld, M., Grothusen, C., Grote, K., and Schieffer, B. (2009). How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb. Haemost. 102, 215–222. doi: 10.1160/th09-05-0297 PubMed Abstract | CrossRef Full Text | Google Scholar Shimizu, Y., Kodama, K., Nishi, N., Kasagi, F., Suyama, A., Soda, M., et al. (2010). Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data. 1950–2003. BMJ 340:b5349. doi: 10.1136/bmj.b5349 PubMed Abstract | CrossRef Full Text | Google Scholar Stewart, F. A., Heeneman, S., Te Poele, J., Kruse, J., Russell, N. S., Gijbels, M., et al. (2006). Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am. J. Pathol. 168, 649–658. doi: 10.2353/ajpath.2006.050409 CrossRef Full Text | Google Scholar Sun, W., Jiao, Y., Cui, B., Gao, X., Xia, Y., and Zhao, Y. (2013). Immune complexes activate human endothelium involving the cell-signaling HMGB1-RAGE axis in the pathogenesis of lupus vasculitis. Lab. Invest. 93, 626–638. doi: 10.1038/labinvest.2013.61 PubMed Abstract | CrossRef Full Text | Google Scholar Supek, F., Bošnjak, M., Škunca, N., and Šmuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800. doi: 10.1371/journal.pone.0021800 PubMed Abstract | CrossRef Full Text | Google Scholar Uberti, F., Lattuada, D., Morsanuto, V., Nava, U., Bolis, G., Vacca, G., et al. (2014). Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J. Clin. Endocrinol. Metab. 99, 1367–1374. doi: 10.1210/jc.2013-2103 PubMed Abstract | CrossRef Full Text | Google Scholar UNSCEAR (2008). Sources and Effects of Ionizing Radiation. Annex A: Medical Radiation Exposures. Van Der Meeren, A., Squiban, C., Gourmelon, P., Lafont, H., and Gaugler, M. H. (1999). Differential regulation by IL-4 and IL-10 of radiation-induced IL-6 and IL-8 production and ICAM-1 expression by human endothelial cells. Cytokine 11, 831–838. doi: 10.1006/cyto.1999.0497 PubMed Abstract | CrossRef Full Text | Google Scholar Verreet, T., Quintens, R., Van Dam, D., Verslegers, M., Tanori, M., Casciati, A., et al. (2015). A multidisciplinary approach unravels early and persistent effects of X-ray exposure at the onset of prenatal neurogenesis. J. Neurodev. Disord. 7:3. doi: 10.1186/1866-1955-7-3 PubMed Abstract | CrossRef Full Text | Google Scholar Vita, J. A., and Keaney, J. F. Jr. (2002). Endothelial function: a barometer for cardiovascular risk? Circulation 106, 640–642. doi: 10.1161/01.CIR.0000028581.07992.56 PubMed Abstract | CrossRef Full Text | Google Scholar Wajapeyee, N., Serra, R. W., Zhu, X., Mahalingam, M., and Green, M. R. (2008). Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132, 363–374. doi: 10.1016/j.cell.2007.12.032 PubMed Abstract | CrossRef Full Text | Google Scholar Wang, H., Adhikari, S., Butler, B. E., Pandita, T. K., Mitra, S., and Hegde, M. L. (2014). A perspective on chromosomal double strand break markers in mammalian cells. Jacobs J. Radiat. Oncol. 1:003. PubMed Abstract | Google Scholar Wang, X., Liu, J., Jiang, L., Wei, X., Niu, C., Wang, R., et al. (2016a). Bach1 Induces Endothelial Cell Apoptosis and Cell-Cycle Arrest through ROS Generation. Oxid. Med. Cell. Longev. 2016:6234043. doi: 10.1155/2016/6234043 PubMed Abstract | CrossRef Full Text | Google Scholar Wang, Y., Boerma, M., and Zhou, D. (2016b). Ionizing Radiation-Induced endothelial cell senescence and cardiovascular diseases. Radiat. Res. 186, 153–161. doi: 10.1667/RR14445.1 PubMed Abstract | CrossRef Full Text | Google Scholar Wasylishen, A. R., and Penn, L. Z. (2010). Myc: the beauty and the beast. Genes Cancer 1, 532–541. doi: 10.1177/1947601910378024 PubMed Abstract | CrossRef Full Text | Google Scholar Weber, C., and Noels, H. (2011). Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422. doi: 10.1038/nm.2538 PubMed Abstract | CrossRef Full Text | Google Scholar Widmer, R. J., and Lerman, A. (2014). Endothelial dysfunction and cardiovascular disease. Glob. Cardiol. Sci. Pract. 2014, 291–308. doi: 10.5339/gcsp.2014.43 PubMed Abstract | CrossRef Full Text | Google Scholar Yentrapalli, R., Azimzadeh, O., Barjaktarovic, Z., Sarioglu, H., Wojcik, A., Harms-Ringdahl, M., et al. (2013a). Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics 13, 1096–1107. doi: 10.1002/pmic.201200463 PubMed Abstract | CrossRef Full Text | Google Scholar Yentrapalli, R., Azimzadeh, O., Sriharshan, A., Malinowsky, K., Merl, J., Wojcik, A., et al. (2013b). The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS ONE 8:e70024. doi: 10.1371/journal.pone.0070024 PubMed Abstract | CrossRef Full Text | Google Scholar Yu, H. (2012). Typical cell signaling response to ionizing radiation: DNA damage and extranuclear damage. Chin. J. Cancer Res. 24, 83–89. doi: 10.1007/s11670-012-0083-1 PubMed Abstract | CrossRef Full Text | Google Scholar Zona, S., Bella, L., Burton, M. J., Nestal de Moraes, G., and Lam, E. W. (2014). FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim. Biophys. Acta 1839, 1316–1322. doi: 10.1016/j.bbagrm.2014.09.016-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr213-
local.classdsPublValOverrule/author_version_not_expected-
dc.identifier.doi10.3389/fphar.2017.00213-
dc.identifier.isi000400240700001-
item.fulltextWith Fulltext-
item.contributorBaselet, Bjorn-
item.contributorBELMANS, Niels-
item.contributorConinx, Emma-
item.contributorLowe, Donna-
item.contributorJanssen, Ann-
item.contributorMichaux, Arlette-
item.contributorTabury, Kevin-
item.contributorRaj, Kenneth-
item.contributorQuintens, Roel-
item.contributorBenotmane, Mohammed A-
item.contributorBaatout, Sarah-
item.contributorSonveaux, Pierre-
item.contributorAerts, An-
item.accessRightsOpen Access-
item.validationecoom 2018-
item.fullcitationBaselet, Bjorn; BELMANS, Niels; Coninx, Emma; Lowe, Donna; Janssen, Ann; Michaux, Arlette; Tabury, Kevin; Raj, Kenneth; Quintens, Roel; Benotmane, Mohammed A; Baatout, Sarah; Sonveaux, Pierre & Aerts, An (2017) Functional Gene Analysis Reveals Cell Cycle Changes and Inflammation in Endothelial Cells Irradiated with a Single X-ray Dose. In: Frontiers in Pharmacology, 8, p. 1-13 (Art N° 213).-
crisitem.journal.eissn1663-9812-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

18
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations

35
checked on Apr 22, 2024

Page view(s)

62
checked on Sep 5, 2022

Download(s)

98
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.