Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarroll, Rachel-
dc.contributor.authorLAWSON, Andrew-
dc.contributor.authorFAES, Christel-
dc.contributor.authorKirby, Russell S.-
dc.contributor.authorAREGAY, Mehreteab-
dc.contributor.authorWATJOU, Kevin-
dc.date.accessioned2017-05-23T14:44:21Z-
dc.date.available2017-05-23T14:44:21Z-
dc.date.issued2016-
dc.identifier.citationENVIRONMETRICS, 27(8), p. 466-478-
dc.identifier.issn1180-4009-
dc.identifier.urihttp://hdl.handle.net/1942/23816-
dc.description.abstractSpatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor.-
dc.description.sponsorshipThis research was supported in part by funding under grant NIH R01CA172805.-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL-
dc.rightsCopyright © 2016 John Wiley & Sons, Ltd.-
dc.subject.otherBRugs; MCMC; melanoma; model selection; Poisson-
dc.subject.otherBRugs; MCMC; melanoma; model selection; Poisson-
dc.titleSpatio-temporal Bayesian model selection for disease mapping-
dc.typeJournal Contribution-
dc.identifier.epage478-
dc.identifier.issue8-
dc.identifier.spage466-
dc.identifier.volume27-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notes[Carroll, Rachel; Lawson, Andrew B.; Aregay, Mehreteab] Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC USA. [Faes, Christel; Watjou, Kevin] Hasselt Univ, Interuniv Inst Stat & Stat Bioinformat, Hasselt, Belgium. [Kirby, Russell S.] Univ S Florida, Dept Community & Family Hlth, Tampa, FL USA.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/env.2410-
dc.identifier.isi000392948100002-
item.validationecoom 2018-
item.contributorCarroll, Rachel-
item.contributorLAWSON, Andrew-
item.contributorFAES, Christel-
item.contributorKirby, Russell S.-
item.contributorAREGAY, Mehreteab-
item.contributorWATJOU, Kevin-
item.fullcitationCarroll, Rachel; LAWSON, Andrew; FAES, Christel; Kirby, Russell S.; AREGAY, Mehreteab & WATJOU, Kevin (2016) Spatio-temporal Bayesian model selection for disease mapping. In: ENVIRONMETRICS, 27(8), p. 466-478.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1180-4009-
crisitem.journal.eissn1099-095X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
carolle 1.pdf
  Restricted Access
Published version728.04 kBAdobe PDFView/Open    Request a copy
ST_MS_aim3_revised_altlinpredsectMOVED_062716.pdfPeer-reviewed author version674.86 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.