Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23982
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOEREMANS, Boaz-
dc.contributor.authorCheng, Hsiu-Wei-
dc.contributor.authorHu, Qingyun-
dc.contributor.authorGarces, Hector F.-
dc.contributor.authorPadture, Nitin P.-
dc.contributor.authorRENNER, Frank-
dc.contributor.authorValtiner, Markus-
dc.date.accessioned2017-07-17T07:14:10Z-
dc.date.available2017-07-17T07:14:10Z-
dc.date.issued2016-
dc.identifier.citationNATURE COMMUNICATIONS, 7, p. 1-7 (Art N° 12693)-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/1942/23982-
dc.description.abstractInterfaces are essential in electrochemical processes, providing a critical nanoscopic design feature for composite electrodes used in Li-ion batteries. Understanding the structure, wetting and mobility at nano-confined interfaces is important for improving the efficiency and lifetime of electrochemical devices. Here we use a Surface Forces Apparatus to quantify the initial wetting of nanometre-confined graphene, gold and mica surfaces by Li-ion battery electrolytes. Our results indicate preferential wetting of confined graphene in comparison with gold or mica surfaces because of specific interactions of the electrolyte with the graphene surface. In addition, wetting of a confined pore proceeds via a profoundly different mechanism compared with wetting of a macroscopic surface. We further reveal the existence of molecularly layered structures of the confined electrolyte. Nanoscopic confinement of less than 4–5 nm and the presence of water decrease the mobility of the electrolyte. These results suggest a lower limit for the pore diameter in nanostructured electrodes.-
dc.description.sponsorshipB.M. acknowledges the financial support from Umicore and KIC InnoEnergy. N.P.P. and H.F.G. acknowledge the financial support from the US National Science Foundation (grant # ECS-0925529).-
dc.language.isoen-
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/-
dc.titleLithium-ion battery electrolyte mobility at nano-confined graphene interfaces-
dc.typeJournal Contribution-
dc.identifier.epage7707-
dc.identifier.spage7692-
dc.identifier.volume7-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr12693-
local.classdsPublValOverrule/author_version_not_expected-
dc.identifier.doi10.1038/ncomms12693-
dc.identifier.isi000383740100001-
item.validationecoom 2017-
item.contributorMOEREMANS, Boaz-
item.contributorCheng, Hsiu-Wei-
item.contributorHu, Qingyun-
item.contributorGarces, Hector F.-
item.contributorPadture, Nitin P.-
item.contributorRENNER, Frank-
item.contributorValtiner, Markus-
item.accessRightsOpen Access-
item.fullcitationMOEREMANS, Boaz; Cheng, Hsiu-Wei; Hu, Qingyun; Garces, Hector F.; Padture, Nitin P.; RENNER, Frank & Valtiner, Markus (2016) Lithium-ion battery electrolyte mobility at nano-confined graphene interfaces. In: NATURE COMMUNICATIONS, 7, p. 1-7 (Art N° 12693).-
item.fulltextWith Fulltext-
crisitem.journal.eissn2041-1723-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ncomms12693.pdfPublished version1.4 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

10
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

26
checked on Apr 30, 2024

Page view(s)

74
checked on Sep 5, 2022

Download(s)

104
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.