Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24010
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTrompoukis, Christos-
dc.contributor.authorStesmans, Andre-
dc.contributor.authorSimoen, Eddy-
dc.contributor.authorDEPAUW, Valerie-
dc.contributor.authorEl Daif, Ounsi-
dc.contributor.authorLee, Kidong-
dc.contributor.authorGORDON, Ivan-
dc.contributor.authorMertens, Robert-
dc.contributor.authorPOORTMANS, Jef-
dc.date.accessioned2017-07-19T09:14:21Z-
dc.date.available2017-07-19T09:14:21Z-
dc.date.issued2016-
dc.identifier.citationPHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 10(2), p. 158-163-
dc.identifier.issn1862-6254-
dc.identifier.urihttp://hdl.handle.net/1942/24010-
dc.description.abstractDry plasma etching, commonly used by the Photonics community as the etching technique for the fabrication of photonic nanostructures, could be a source of device performance limitations when used in the frame of silicon photovoltaics. So far, the lack of silicon solar cells with state-of-the-art efficiencies utilizing nanophotonic concepts shows how challenging their integration is, owing to the trade-off between optical and electrical properties. In this study we show that dry plasma etching results in the degradation of the silicon material quality due to (i) a high density of dangling bonds and (ii) the presence of sub-surface defects, resulting in high surface recombination velocities and low minority carrier lifetimes. On the contrary, wet chemical anisotropic etching used as an alternative, leads to the formation of inverted nanopyramids that result in low surface recombination velocity and low density of dangling bonds. The proposed inverted nanopyramids could enable high efficiency photonic assisted solar cells by offering the potential to achieve higher short-circuit current without degrading the open circuit voltage.-
dc.description.sponsorshipThe work was supported by the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 309127, PhotoNVoltaics (Nanophotonics for ultra-thin crystalline silicon photovoltaics).-
dc.language.isoen-
dc.rights(c) 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim-
dc.subject.otherlight trapping; silicon; solar cells; charge carrier lifetimes; defects; etching-
dc.titlePhotonic nanostructures for advanced light trapping in silicon solar cells: the impact of etching on the material electronic quality-
dc.typeJournal Contribution-
dc.identifier.epage163-
dc.identifier.issue2-
dc.identifier.spage158-
dc.identifier.volume10-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/pssr.201510394-
dc.identifier.isi000371077400005-
item.fulltextWith Fulltext-
item.fullcitationTrompoukis, Christos; Stesmans, Andre; Simoen, Eddy; DEPAUW, Valerie; El Daif, Ounsi; Lee, Kidong; GORDON, Ivan; Mertens, Robert & POORTMANS, Jef (2016) Photonic nanostructures for advanced light trapping in silicon solar cells: the impact of etching on the material electronic quality. In: PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 10(2), p. 158-163.-
item.accessRightsRestricted Access-
item.validationecoom 2017-
item.contributorTrompoukis, Christos-
item.contributorStesmans, Andre-
item.contributorSimoen, Eddy-
item.contributorDEPAUW, Valerie-
item.contributorEl Daif, Ounsi-
item.contributorLee, Kidong-
item.contributorGORDON, Ivan-
item.contributorMertens, Robert-
item.contributorPOORTMANS, Jef-
crisitem.journal.issn1862-6254-
crisitem.journal.eissn1862-6270-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
trompoukis2015.pdf
  Restricted Access
Published version595.94 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

7
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

9
checked on May 8, 2024

Page view(s)

50
checked on Sep 7, 2022

Download(s)

42
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.