Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMallinckrodt, Craig-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorRathmann, Suchitrita-
dc.date.accessioned2017-07-19T12:36:32Z-
dc.date.available2017-07-19T12:36:32Z-
dc.date.issued2017-
dc.identifier.citationPHARMACEUTICAL STATISTICS, 16(1), p. 29-36-
dc.identifier.issn1539-1604-
dc.identifier.urihttp://hdl.handle.net/1942/24017-
dc.description.abstractRecent research has fostered new guidance on preventing and treating missing data. Consensus exists that clear objectives should be defined along with the causal estimands; trial design and conduct should maximize adherence to the protocol specified interventions; and a sensible primary analysis should be used along with plausible sensitivity analyses. Two general categories of estimands are effects of the drug as actually taken (de facto, effectiveness) and effects of the drug if taken as directed (de jure, efficacy). Motivated by examples, we argue that no single estimand is likely to meet the needs of all stakeholders and that each estimand has strengths and limitations. Therefore, stakeholder input should be part of an iterative study development process that includes choosing estimands that are consistent with trial objectives. To this end, an example is used to illustrate the benefit from assessing multiple estimands in the same study. A second example illustrates that maximizing adherence reduces sensitivity to missing data assumptions for de jure estimands but may reduce generalizability of results for de facto estimands if efforts to maximize adherence in the trial are not feasible in clinical practice. A third example illustrates that whether or not data after initiation of rescue medication should be included in the primary analysis depends on the estimand to be tested and the clinical setting. We further discuss the sample size and total exposure to placebo implications of including post-rescue data in the primary analysis.-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL-
dc.rightsCopyright © 2016 John Wiley & Sons, Ltd-
dc.subject.othermissing data; clinical trials; estimands-
dc.subject.othermissing data; clinical trials; estimands-
dc.titleChoosing estimands in clinical trials with missing data-
dc.typeJournal Contribution-
dc.identifier.epage36-
dc.identifier.issue1-
dc.identifier.spage29-
dc.identifier.volume16-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notes[Mallinckrodt, Craig; Rathmann, Suchitrita] Eli Lilly & Co, Lilly Res Labs, Indianapolis, IN 46285 USA. [Molenberghs, Geert] Hasselt Univ, I BioStat, Diepenbeek, Belgium. [Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, Leuven, Belgium.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/pst.1765-
dc.identifier.isi000393871000005-
item.validationecoom 2018-
item.contributorMallinckrodt, Craig-
item.contributorMOLENBERGHS, Geert-
item.contributorRathmann, Suchitrita-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationMallinckrodt, Craig; MOLENBERGHS, Geert & Rathmann, Suchitrita (2017) Choosing estimands in clinical trials with missing data. In: PHARMACEUTICAL STATISTICS, 16(1), p. 29-36.-
crisitem.journal.issn1539-1604-
crisitem.journal.eissn1539-1612-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
mallinckrodt 1.pdf
  Restricted Access
Published version160.92 kBAdobe PDFView/Open    Request a copy
Estimands2_R4.pdfPeer-reviewed author version96.15 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.