Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24030
Title: Calabi–Yau property under monoidal Morita–Takeuchi equivalence
Authors: Wang, Xingting
Yu, Xiaolan
ZHANG, Yinhuo 
Issue Date: 2017
Source: PACIFIC JOURNAL OF MATHEMATICS, 290 (2), p. 481-510
Abstract: Let H and L be two Hopf algebras such that their comodule categories are monoidally equivalent. We prove that if H is a twisted Calabi–Yau (CY) Hopf algebra, then L is a twisted CY algebra when it is homologically smooth. In particular, if H is a Noetherian twisted CY Hopf algebra and L has finite global dimension, then L is a twisted CY algebra.
Notes: Wang, XT (reprint author), Temple Univ, Dept Math, Philadelphia, PA 19122 USA. xingting@temple.edu; xlyu@hznu.edu.cn; yinhuo.zhang@uhasselt.be
Keywords: Morita–Takeuchi equivalence; Calabi–Yau algebra; cogroupoid
Document URI: http://hdl.handle.net/1942/24030
Link to publication/dataset: http://msp.org/pjm/2017/290-2/index.xhtml
ISSN: 0030-8730
e-ISSN: 1945-5844
DOI: 10.2140/pjm.2017.290.481
ISI #: 000409093000010
Rights: © 2017 Mathematical Sciences Publisher
Category: A1
Type: Journal Contribution
Validations: ecoom 2018
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
comodule13.pdfPeer-reviewed author version474.74 kBAdobe PDFView/Open
Calabi-Yau property under monoidal Morita-Takeuchi equivalences.pdfPublished version457.11 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.