Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24036
Title: Box Dimension and Cyclicity of Canard Cycles
Authors: HUZAK, Renato 
Issue Date: 2018
Source: Qualitative Theory of Dynamical Systems, 17 (2), p. 475-493
Abstract: It is well known that the slow divergence integral is a useful tool for obtaining a bound on the cyclicity of canard cycles in planar slow–fast systems. In this paper a new approach is introduced to determine upper bounds on the number of relaxation oscillations Hausdorff-close to a balanced canard cycle in planar slow–fast systems, by computing the box dimension of one orbit of a discrete one-dimensional dynamical system (so-called slow relation function) assigned to the canard cycle.
Notes: Huzak, R (reprint author), Hasselt Univ, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium. renato.huzak@uhasselt.be
Keywords: box dimension; slow-fast systems; slow relation function; slow divergence integral
Document URI: http://hdl.handle.net/1942/24036
ISSN: 1575-5460
e-ISSN: 1662-3592
DOI: 10.1007/s12346-017-0248-x
ISI #: 000434286700012
Rights: © Springer International Publishing AG 2017
Category: A1
Type: Journal Contribution
Validations: ecoom 2019
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
BoxDimSlowFast.pdfPeer-reviewed author version585.01 kBAdobe PDFView/Open
aaaa.pdf
  Restricted Access
Published version805.82 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.