Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24071
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrasanna, Rohit-
dc.contributor.authorGold-Parker, Aryeh-
dc.contributor.authorLeijtens, Tomas-
dc.contributor.authorCONINGS, Bert-
dc.contributor.authorBABAYIGIT, Aslihan-
dc.contributor.authorBOYEN, Hans-Gerd-
dc.contributor.authorToney, Michael F.-
dc.contributor.authorMcGehee, Michael D.-
dc.date.accessioned2017-08-04T10:43:19Z-
dc.date.available2017-08-04T10:43:19Z-
dc.date.issued2017-
dc.identifier.citationJOURNAL OF THE AMERICAN CHEMICAL SOCIETY,139 (32), p. 11117-11124-
dc.identifier.issn0002-7863-
dc.identifier.urihttp://hdl.handle.net/1942/24071-
dc.description.abstractTin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX6 octahedra, or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend – they show no octahedral tilting upon Cs-substitution, but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites, and will be useful in further development of perovskite semiconductors for optoelectronic applications.-
dc.description.sponsorshipWe thank Kevin A. Bush and Kyle Frohna for productive and stimulating conversations, Adam H. Slavney and David A. Hanifi for insightful comments on the manuscript, and Caleb C. Boyd for assistance with solar cell fabrication. This research was supported by the Office of Naval Research, U.S. Department of Defense. Use of the Stanford Synchrotron Radiation Light-source, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. T.L. is funded by a Marie Sklodowska Curie International Fellowship under grant agreement H2O2IF-GA-2015-659225. A.G. is supported by NSF GRFP (DGE-1147470). B.C. is a postdoctoral research fellow of the Research Fund Flanders (FWO). A.B. is a Ph.D. fellow of FWO.-
dc.language.isoen-
dc.rights© American Chemical Society.-
dc.titleBand Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics-
dc.typeJournal Contribution-
dc.identifier.epage11124-
dc.identifier.issue32-
dc.identifier.spage11117-
dc.identifier.volume139-
local.bibliographicCitation.jcatA1-
dc.description.notesLeijtens, T; McGehee, MD (reprint author), Stanford Univ, Dept Mat Sci, 476 Lomita Mall, Stanford, CA 94305 USA. toleijtens@gmail.com; mmcgehee@stanford.edu-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusIn Press-
local.classdsPublValOverrule/author_version_not_expected-
dc.identifier.doi10.1021/jacs.7b04981-
dc.identifier.isi000408074800036-
item.fulltextWith Fulltext-
item.contributorPrasanna, Rohit-
item.contributorGold-Parker, Aryeh-
item.contributorLeijtens, Tomas-
item.contributorCONINGS, Bert-
item.contributorBABAYIGIT, Aslihan-
item.contributorBOYEN, Hans-Gerd-
item.contributorToney, Michael F.-
item.contributorMcGehee, Michael D.-
item.accessRightsOpen Access-
item.fullcitationPrasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; CONINGS, Bert; BABAYIGIT, Aslihan; BOYEN, Hans-Gerd; Toney, Michael F. & McGehee, Michael D. (2017) Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics. In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,139 (32), p. 11117-11124.-
item.validationecoom 2018-
crisitem.journal.issn0002-7863-
crisitem.journal.eissn1520-5126-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Band Gap Tuning draft v14.pdfPeer-reviewed author version1.24 MBAdobe PDFView/Open
jacs.7b04981.pdf
  Restricted Access
Published version2.22 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

162
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

529
checked on Apr 22, 2024

Page view(s)

82
checked on Sep 7, 2022

Download(s)

1,182
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.