Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24136
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDrikvandi, Reza-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2017-08-07T13:21:40Z-
dc.date.available2017-08-07T13:21:40Z-
dc.date.issued2017-
dc.identifier.citationBIOMETRICS, 73(1), p. 63-71-
dc.identifier.issn0006-341X-
dc.identifier.urihttp://hdl.handle.net/1942/24136-
dc.description.abstractIt is traditionally assumed that the random effects in mixed models follow a multivariate normal distribution, making likelihood-based inferences more feasible theoretically and computationally. However, this assumption does not necessarily hold in practice which may lead to biased and unreliable results. We introduce a novel diagnostic test based on the so-called gradient function proposed by Verbeke and Molenberghs (2013) to assess the random-effects distribution. We establish asymptotic properties of our test and show that, under a correctly specified model, the proposed test statistic converges to a weighted sum of independent chi-squared random variables each with one degree of freedom. The weights, which are eigenvalues of a square matrix, can be easily calculated. We also develop a parametric bootstrap algorithm for small samples. Our strategy can be used to check the adequacy of any distribution for random effects in a wide class of mixed models, including linear mixed models, generalized linear mixed models, and non-linear mixed models, with univariate as well as multivariate random effects. Both asymptotic and bootstrap proposals are evaluated via simulations and a real data analysis of a randomized multicenter study on toenail dermatophyte onychomycosis.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights© 2016, The International Biometric Society-
dc.subject.otherAsymptotic distribution; Eigenvalues; Gradient function; Longitudinal data; Parametric bootstrap; Random effects-
dc.subject.otherasymptotic distribution; eigenvalues; gradient function; longitudinal data; parametric bootstrap; random effects-
dc.titleDiagnosing Misspecification of the Random-Effects Distribution in Mixed Models-
dc.typeJournal Contribution-
dc.identifier.epage71-
dc.identifier.issue1-
dc.identifier.spage63-
dc.identifier.volume73-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notes[Drikvandi, Reza; Verbeke, Geert; Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, Leuven, Belgium. [Drikvandi, Reza] Imperial Coll London, Dept Math, London, England. [Verbeke, Geert; Molenberghs, Geert] Univ Hasselt, I BioStat, Hasselt, Belgium.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1111/biom.12551-
dc.identifier.isi000397855900006-
item.fulltextWith Fulltext-
item.fullcitationDrikvandi, Reza; VERBEKE, Geert & MOLENBERGHS, Geert (2017) Diagnosing Misspecification of the Random-Effects Distribution in Mixed Models. In: BIOMETRICS, 73(1), p. 63-71.-
item.contributorDrikvandi, Reza-
item.contributorVERBEKE, Geert-
item.contributorMOLENBERGHS, Geert-
item.accessRightsOpen Access-
item.validationecoom 2018-
crisitem.journal.issn0006-341X-
crisitem.journal.eissn1541-0420-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
drikvandi2016.pdf
  Restricted Access
Published version245.22 kBAdobe PDFView/Open    Request a copy
Paper_FinalVersion.pdfPeer-reviewed author version287.18 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

32
checked on Oct 27, 2025

WEB OF SCIENCETM
Citations

31
checked on Nov 2, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.