Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24136
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDrikvandi, Reza-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2017-08-07T13:21:40Z-
dc.date.available2017-08-07T13:21:40Z-
dc.date.issued2017-
dc.identifier.citationBIOMETRICS, 73(1), p. 63-71-
dc.identifier.issn0006-341X-
dc.identifier.urihttp://hdl.handle.net/1942/24136-
dc.description.abstractIt is traditionally assumed that the random effects in mixed models follow a multivariate normal distribution, making likelihood-based inferences more feasible theoretically and computationally. However, this assumption does not necessarily hold in practice which may lead to biased and unreliable results. We introduce a novel diagnostic test based on the so-called gradient function proposed by Verbeke and Molenberghs (2013) to assess the random-effects distribution. We establish asymptotic properties of our test and show that, under a correctly specified model, the proposed test statistic converges to a weighted sum of independent chi-squared random variables each with one degree of freedom. The weights, which are eigenvalues of a square matrix, can be easily calculated. We also develop a parametric bootstrap algorithm for small samples. Our strategy can be used to check the adequacy of any distribution for random effects in a wide class of mixed models, including linear mixed models, generalized linear mixed models, and non-linear mixed models, with univariate as well as multivariate random effects. Both asymptotic and bootstrap proposals are evaluated via simulations and a real data analysis of a randomized multicenter study on toenail dermatophyte onychomycosis.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights© 2016, The International Biometric Society-
dc.subject.otherAsymptotic distribution; Eigenvalues; Gradient function; Longitudinal data; Parametric bootstrap; Random effects-
dc.subject.otherasymptotic distribution; eigenvalues; gradient function; longitudinal data; parametric bootstrap; random effects-
dc.titleDiagnosing Misspecification of the Random-Effects Distribution in Mixed Models-
dc.typeJournal Contribution-
dc.identifier.epage71-
dc.identifier.issue1-
dc.identifier.spage63-
dc.identifier.volume73-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notes[Drikvandi, Reza; Verbeke, Geert; Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, Leuven, Belgium. [Drikvandi, Reza] Imperial Coll London, Dept Math, London, England. [Verbeke, Geert; Molenberghs, Geert] Univ Hasselt, I BioStat, Hasselt, Belgium.-
local.publisher.placeHOBOKEN-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1111/biom.12551-
dc.identifier.isi000397855900006-
item.validationecoom 2018-
item.contributorDrikvandi, Reza-
item.contributorVERBEKE, Geert-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationDrikvandi, Reza; VERBEKE, Geert & MOLENBERGHS, Geert (2017) Diagnosing Misspecification of the Random-Effects Distribution in Mixed Models. In: BIOMETRICS, 73(1), p. 63-71.-
crisitem.journal.issn0006-341X-
crisitem.journal.eissn1541-0420-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
drikvandi2016.pdf
  Restricted Access
Published version245.22 kBAdobe PDFView/Open    Request a copy
Paper_FinalVersion.pdfPeer-reviewed author version287.18 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.