Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/24136
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Drikvandi, Reza | - |
dc.contributor.author | VERBEKE, Geert | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.date.accessioned | 2017-08-07T13:21:40Z | - |
dc.date.available | 2017-08-07T13:21:40Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | BIOMETRICS, 73(1), p. 63-71 | - |
dc.identifier.issn | 0006-341X | - |
dc.identifier.uri | http://hdl.handle.net/1942/24136 | - |
dc.description.abstract | It is traditionally assumed that the random effects in mixed models follow a multivariate normal distribution, making likelihood-based inferences more feasible theoretically and computationally. However, this assumption does not necessarily hold in practice which may lead to biased and unreliable results. We introduce a novel diagnostic test based on the so-called gradient function proposed by Verbeke and Molenberghs (2013) to assess the random-effects distribution. We establish asymptotic properties of our test and show that, under a correctly specified model, the proposed test statistic converges to a weighted sum of independent chi-squared random variables each with one degree of freedom. The weights, which are eigenvalues of a square matrix, can be easily calculated. We also develop a parametric bootstrap algorithm for small samples. Our strategy can be used to check the adequacy of any distribution for random effects in a wide class of mixed models, including linear mixed models, generalized linear mixed models, and non-linear mixed models, with univariate as well as multivariate random effects. Both asymptotic and bootstrap proposals are evaluated via simulations and a real data analysis of a randomized multicenter study on toenail dermatophyte onychomycosis. | - |
dc.language.iso | en | - |
dc.publisher | WILEY | - |
dc.rights | © 2016, The International Biometric Society | - |
dc.subject.other | Asymptotic distribution; Eigenvalues; Gradient function; Longitudinal data; Parametric bootstrap; Random effects | - |
dc.subject.other | asymptotic distribution; eigenvalues; gradient function; longitudinal data; parametric bootstrap; random effects | - |
dc.title | Diagnosing Misspecification of the Random-Effects Distribution in Mixed Models | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 71 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 63 | - |
dc.identifier.volume | 73 | - |
local.format.pages | 9 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Drikvandi, Reza; Verbeke, Geert; Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, Leuven, Belgium. [Drikvandi, Reza] Imperial Coll London, Dept Math, London, England. [Verbeke, Geert; Molenberghs, Geert] Univ Hasselt, I BioStat, Hasselt, Belgium. | - |
local.publisher.place | HOBOKEN | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1111/biom.12551 | - |
dc.identifier.isi | 000397855900006 | - |
item.validation | ecoom 2018 | - |
item.contributor | Drikvandi, Reza | - |
item.contributor | VERBEKE, Geert | - |
item.contributor | MOLENBERGHS, Geert | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
item.fullcitation | Drikvandi, Reza; VERBEKE, Geert & MOLENBERGHS, Geert (2017) Diagnosing Misspecification of the Random-Effects Distribution in Mixed Models. In: BIOMETRICS, 73(1), p. 63-71. | - |
crisitem.journal.issn | 0006-341X | - |
crisitem.journal.eissn | 1541-0420 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
drikvandi2016.pdf Restricted Access | Published version | 245.22 kB | Adobe PDF | View/Open Request a copy |
Paper_FinalVersion.pdf | Peer-reviewed author version | 287.18 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.