Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24154
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAERTS, Marc-
dc.contributor.authorAYELE, Girma-
dc.contributor.authorBoesner, Stefan-
dc.contributor.authorBuntinx, Frank-
dc.contributor.authorBurnand, Bernard-
dc.contributor.authorHaasenritter, Joerg-
dc.contributor.authorHerzig, Lilli-
dc.contributor.authorKnottnerus, J. Andre-
dc.contributor.authorNilsson, Staffan-
dc.contributor.authorRenier, Walter-
dc.contributor.authorSox, Carol-
dc.contributor.authorSox, Harold-
dc.contributor.authorDonner-Banzhoff, Norbert-
dc.date.accessioned2017-08-08T07:44:33Z-
dc.date.available2017-08-08T07:44:33Z-
dc.date.issued2017-
dc.identifier.citationJOURNAL OF CLINICAL EPIDEMIOLOGY, 81, p. 120-128-
dc.identifier.issn0895-4356-
dc.identifier.urihttp://hdl.handle.net/1942/24154-
dc.description.abstractObjective: To construct a clinical prediction rule for coronary artery disease (CAD) presenting with chest pain in primary care. Study Design and Setting: Meta-Analysis using 3,099 patients from five studies. To identify candidate predictors, we used random forest trees, multiple imputation of missing values, and logistic regression within individual studies. To generate a prediction rule on the pooled data, we applied a regression model that took account of the differing standard data sets collected by the five studies. Results: The most parsimonious rule included six equally weighted predictors: age >= 55 (males) or >= 65 (females) (+1); attending physician suspected a serious diagnosis (+1); history of CAD (+1); pain brought on by exertion (+1); pain feels like "pressure" (+1); pain reproducible by palpation (-1). CAD was considered absent if the prediction score is <2. The area under the ROC curve was 0.84. We applied this rule to a study setting with a CAD prevalence of 13.2% using a prediction score cutoff of <2 (i.e., 1, 0, or +1). When the score was <2, the probability of CAD was 2.1% (95% CI: 1.1-3.9%); when the score was >= 2, it was 43.0% (95% CI: 35.8-50.4%). Conclusions: Clinical prediction rules are a key strategy for individualizing care. Large data sets based on electronic health records from diverse sites create opportunities for improving their internal and external validity. Our patient-level meta-analysis from five primary care sites should improve external validity. Our strategy for addressing site-to-site systematic variation in missing data should improve internal validity. Using principles derived from decision theory, we also discuss the problem of setting the cutoff prediction score for taking action. (C) 2016 Elsevier Inc. All rights reserved.-
dc.description.sponsorshipThis study was funded by Federal Ministry of Education and Research, Germany (BMBF grant no. FKZ 01GK0920).-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE INC-
dc.rights(C) 2016 Elsevier Inc. All rights reserved-
dc.subject.otherChest pain; Individual patient data meta-analysis; Myocardial ischemia; Medical history taking; Symptom assessment; Primary health care; Sensitivity and specificity-
dc.subject.otherchest pain; individual patient data meta-analysis; myocardial ischemia; medical history taking; symptom assessment; primary health care; sensitivity and specificity-
dc.titlePooled individual patient data from five countries were used to derive a clinical prediction rule for coronary artery disease in primary care-
dc.typeJournal Contribution-
dc.identifier.epage128-
dc.identifier.spage120-
dc.identifier.volume81-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notes[Aerts, Marc; Minalu, Girma] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BIOST, I BioStat, Bldg D, B-3590 Diepenbeek, Belgium. [Boesner, Stefan; Haasenritter, Joerg; Donner-Banzhoff, Norbert] Philipps Univ Marburg, Dept Gen Practice & Family Med, Karl von Str 4, D-35037 Marburg, Germany. [Buntinx, Frank; Renier, Walter] Katholieke Univ Leuven, Dept Publ Hlth & Primary Care, Kapucijnenvoer 33,Blok J,PB 7001, B-3000 Leuven, Belgium. [Buntinx, Frank; Knottnerus, J. Andre] Maastricht Univ, Dept Gen Practice, Peter Debyeplein 1,POB 616, NL-6200 MD Maastricht, Netherlands. [Burnand, Bernard] Univ Lausanne Hosp, Inst Social & Prevent Med, Route Corniche 10, CH-1010 Lausanne, Switzerland. [Herzig, Lilli] Univ Lausanne, Inst Family Med, 44 Rue Bugnon, CH-1011 Lausanne, Switzerland. [Sox, Carol; Sox, Harold] Linkoping Univ, Dept Med & Hlth Sci, Div Community Med, SE-58183 Linkoping, Sweden. [Sox, Harold] Patient Ctr Outcomes Res Inst, 1828 L St NW,Suite 900, Washington, DC 20036 USA.-
local.publisher.placeNEW YORK-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jclinepi.2016.09.011-
dc.identifier.isi000395497500016-
item.validationecoom 2018-
item.contributorAERTS, Marc-
item.contributorAYELE, Girma-
item.contributorBoesner, Stefan-
item.contributorBuntinx, Frank-
item.contributorBurnand, Bernard-
item.contributorHaasenritter, Joerg-
item.contributorHerzig, Lilli-
item.contributorKnottnerus, J. Andre-
item.contributorNilsson, Staffan-
item.contributorRenier, Walter-
item.contributorSox, Carol-
item.contributorSox, Harold-
item.contributorDonner-Banzhoff, Norbert-
item.fullcitationAERTS, Marc; AYELE, Girma; Boesner, Stefan; Buntinx, Frank; Burnand, Bernard; Haasenritter, Joerg; Herzig, Lilli; Knottnerus, J. Andre; Nilsson, Staffan; Renier, Walter; Sox, Carol; Sox, Harold & Donner-Banzhoff, Norbert (2017) Pooled individual patient data from five countries were used to derive a clinical prediction rule for coronary artery disease in primary care. In: JOURNAL OF CLINICAL EPIDEMIOLOGY, 81, p. 120-128.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn0895-4356-
crisitem.journal.eissn1878-5921-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
aerts 1.pdf
  Restricted Access
Published version381.55 kBAdobe PDFView/Open    Request a copy
JCE-15-705R2 copy.pdfPeer-reviewed author version2.19 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.