Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24157
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJiang, Honghua-
dc.contributor.authorKulkarni, Pandurang M.-
dc.contributor.authorMallinckrodt, Craig H.-
dc.contributor.authorShurzinske, Linda-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorLipkovich, Ilya-
dc.date.accessioned2017-08-08T08:04:38Z-
dc.date.available2017-08-08T08:04:38Z-
dc.date.issued2017-
dc.identifier.citationSTATISTICS IN BIOPHARMACEUTICAL RESEARCH, 9(1), p. 126-134-
dc.identifier.issn1946-6315-
dc.identifier.urihttp://hdl.handle.net/1942/24157-
dc.description.abstractIn linear regression models, covariate-adjusted analysis is not expected to change the estimates of the treatment effect in the clinical trials with randomized treatment assignment but rather to increase the precision of the estimates. However, the covariate-adjusted treatment effect estimates are generally not equivalent to the unadjusted estimates in logistic regression analysis for binary clinical trial data. In this article, we report the results of a simulation study conducted to quantify the magnitude of difference between the estimands underlying the two estimators in logistic regression. The simulation results demonstrated that both unadjusted and adjusted analyses preserved Type I error at the nominal level. The covariate-adjusted analysis produced unbiased, larger treatment effect estimates, larger standard error, and increased power comparedwith the unadjusted analysiswhen the sample sizewas large. The unadjusted analysis resulted in biased estimates of treatment effect. Analysis results for five phase 3 diabetes trials of the same compound were consistent with the simulation findings. Therefore, covariate-adjusted analysis is recommended for evaluating binary outcomes in clinical data.-
dc.language.isoen-
dc.publisherAMER STATISTICAL ASSOC-
dc.subject.otherbiased estimates; estimands; power; type I error-
dc.subject.otherBiased estimates; Estimands; Power; Type I error-
dc.titleCovariate Adjustment for Logistic Regression Analysis of Binary Clinical Trial Data-
dc.typeJournal Contribution-
dc.identifier.epage134-
dc.identifier.issue1-
dc.identifier.spage126-
dc.identifier.volume9-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notes[Jiang, Honghua; Kulkarni, Pandurang M.; Mallinckrodt, Craig H.; Shurzinske, Linda] Eli Lilly & Co, Lilly Res Labs, Indianapolis, IN 46285 USA. [Molenberghs, Geert] Hasselt Univ, I BioStat, Diepenbeek, Belgium. [Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, Leuven, Belgium. [Lipkovich, Ilya] Quintiles, Morrisville, NC USA.-
local.publisher.placeALEXANDRIA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/19466315.2016.1234973-
dc.identifier.isi000397258400013-
item.validationecoom 2018-
item.contributorJiang, Honghua-
item.contributorKulkarni, Pandurang M.-
item.contributorMallinckrodt, Craig H.-
item.contributorShurzinske, Linda-
item.contributorMOLENBERGHS, Geert-
item.contributorLipkovich, Ilya-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationJiang, Honghua; Kulkarni, Pandurang M.; Mallinckrodt, Craig H.; Shurzinske, Linda; MOLENBERGHS, Geert & Lipkovich, Ilya (2017) Covariate Adjustment for Logistic Regression Analysis of Binary Clinical Trial Data. In: STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 9(1), p. 126-134.-
crisitem.journal.issn1946-6315-
crisitem.journal.eissn1946-6315-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
jiang2016.pdfPeer-reviewed author version786.3 kBAdobe PDFView/Open
Covariate.pdf
  Restricted Access
Published version729.85 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.