Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24264
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKNOCKAERT, Griet-
dc.contributor.authorHouben, Levy-
dc.contributor.authorADONS, Dimitri-
dc.contributor.authorCARLEER, Robert-
dc.contributor.authorYPERMAN, Jan-
dc.contributor.authorPEETERS, Roos-
dc.contributor.authorBUNTINX, Mieke-
dc.date.accessioned2017-08-18T09:48:15Z-
dc.date.available2017-08-18T09:48:15Z-
dc.date.issued2017-
dc.identifier.citationWyser, Yves; Martine, Eric (Ed.). 28th IAPRI Symposium on Packaging 2017: Unlocking the full potential of packaging across the value-chain, School of Engineering and Management Vaud (HEIG-VD),p. 460-476-
dc.identifier.isbn9782839921206-
dc.identifier.urihttp://hdl.handle.net/1942/24264-
dc.description.abstractThermoformed trays are very popular in food packaging thanks to their ease of production, filling and sealing as well as to the relative low production costs. It is also known that thermoforming affects different properties of the sheet material. In collaboration with Belgian food and packaging companies, the oxygen, carbon dioxide and water vapor permeability and the thickness is studied before and after thermoforming 400-µm poly(lactic acid) (PLA) monolayer and PLA/EVOH/PLA multilayer sheets into trays with variable drawing depths of 25, 50 and 75 mm and two extra 50-mm trays with a variable radius of the corners and with ribs in the walls. Thinning increases with drawing depth, especially in the corners of the trays and in the walls of the 75-mm trays. The EVOH layer thins proportionally, representing ~3% of the total thickness before and after thermoforming. Co-extrusion of PLA and EVOH results in a multilayer sheet with an oxygen barrier that is ~35x better than monolayer PLA in dry conditions and ~22x better in humid conditions. The carbon dioxide barrier of PLA/EVOH/PLA sheets is ~77x better than PLA sheets. The oxygen transmission rate (OTR) of PLA/EVOH/PLA trays is 26x lower for the 25-mm tray, 27-30x lower for the 50-mm trays and 36x lower for the 75-mm tray as compared to the respective PLA trays (in humid conditions). The OTR increases with drawing depth as a consequence of thinning and surface increase, but no significant effect on PLA crystallinity is observed. Therefore the theoretical OTR is in good agreement with the measured OTR. In addition, PE-based adhesive layers in PLA/EVOH/PLA can improve the water vapor barrier properties of PLA 3-5x depending on the thickness of the adhesive layers. In conclusion, this study confirms the applicability of PLA in food packaging, especially after co-extrusion with EVOH, thereby creating a high barrier packaging material.-
dc.description.sponsorshipIWT TETRA-
dc.language.isoen-
dc.publisherSchool of Engineering and Management Vaud (HEIG-VD)-
dc.rights(c) 2017 HEIG-VD, Yverdon-les-Bains, Switzerland-
dc.subject.otherpoly(lactic acid); PLA; ethylene vinyl alcohol copolymer; EVOH; gas permeability; thermoforming; monolayer; multilayer-
dc.titleThickness and Gas Permeability Properties of PLA and PLA/EVOH/PLA before and after Thermoforming into Variable Tray Types.-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsWyser, Yves-
local.bibliographicCitation.authorsMartine, Eric-
local.bibliographicCitation.conferencedate09-12/05/2017-
local.bibliographicCitation.conferencename28th IAPRI World Symposium on Packaging 2017-
local.bibliographicCitation.conferenceplaceOlympic Museum, Lausanne, Switzerland-
dc.identifier.epage476-
dc.identifier.spage460-
local.bibliographicCitation.jcatC1-
local.publisher.placeYverdon-les-Bains, Switzerland-
dc.relation.references1. Plastics Europe, Plastics – The facts, 2016. Source: PlasticsEurope (PEMRG)/Consultic/myCeppi 2. Siracusa, V., Blanco, I., Romani, S., Tylewicz, U., Rocculi, P. and Rosa, M.D., 2012, Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. Journal of Applied Polymer Science, 125, E390-E401. 3. Elvers E., Song C.H, Steinbüchel A. & Leker J., 2016, Technology Trends in Biodegradable Polymers: Evidence from Patent Analysis, Polymer Reviews, 56:4, 584-606. 4. Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D., 2008, Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19, 634-643. 5. Garlotta, D., 2001, A literature review of poly(lactic acid), Journal of Polymers and the Environment, 9, 63-84. 6. Bao, L., Dorgan, J.R., Knauss, D., Hait, S., Oliveira, N.S., Maruccho, I.M., 2006, Gas permeation properties of poly(lactic acid) revisited, Journal of Membrane Science, 285, 166-172. 7. Peelman, N., Ragaert, P., De Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Van Impe, F., Devlieghere, F., 2013, Application of bioplastics for food packaging, Trends in Food Science & Technology, 32, 128-141. 8. Gui, Z., Zhang, W., Lu, C and Cheng, S., 2012, Improving the Barrier Properties of Poly(Lactic Acid) by Blending with Poly(Ethylene-Co-Vinyl Alcohol), Journal of Macromolecular Science, Part B: Physics. 52:5, 685-700. 9. Mokwena, K.K. and Tang, J., 2012, Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods, Critical Reviews in Food Science and Nutrition, 52, 640-650. 10. Buntinx, M., Willems, G., Knockaert, G., Adons, D., Yperman, J., Carleer, R., Peeters, R., 2014, Evaluation of the thickness and oxygen transmission rate before and after thermoforming mono- and multi-layer sheets into trays with variable depth. Polymers, 6, 3019-3043. 11. Pettersen, M.K., Nilsson, A., Espedal, A., Kohler, A. (2004a). Prediction of oxygen transmission rate for thermoformed trays. Packaging Technology and Science, 17, 321-332. 12. Auras, R., Harte, B., Selke, S., 2004, An overview of polylactides as packaging materials, Macromolecular Bioscience, 4, 835-864. 13. Clarinval, A.M. and Halleux, J., 2005, Classification of biodegradable polymers. In Smith, R., Biodegradable Polymers for Industrial Applications, Woodhead Publishing Limited, England, 3-31. 14. Zhang, Z., Britt, I.J., Tung, M.A., 2001, Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity, Journal of Applied Polymer Science, 82, 1866-1872. 15. Park, S.H., Lee, H.S., Choi, J.H., Jeong, C.M., Sung, M.H., Park, H.J., 2012, Improvements in barrier properties of poly(lactic acid) films coated with chitosan or chitosan/clay nanocomposite. Journal of Applied Polymer Science, 125, E675-E680. 16. Duan, Z., Thomas, N.L., Huang, W., 2013, Water vapour permeability of poly(lactic acid) nanocomposites, Journal of Membrane Science, 445, 112-118. 17. Vandewijngaarden J, Murariu M, Dubois P, Carleer R, Yperman J, Adriaensens P, Schreurs S, Lepot N, Peeters R and Buntinx M, 2014, Gas permeability properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), Journal of polymers and the environment, 22, 4, 501-507. 18. Yampolskii, Y.P., I., Freeman B.D., 2006, Materials Science of Membranes for Gas and Vapor Separation, ed. Y.P. Yampolskii, I., Freeman B.D. Hoboken, USA: John Wiley & Sons 19. Matteucci, S., Yampolskii, Y., Freeman, B.D., Pinnau, I., 2006, Transport of gases and vapors in glassy and rubbery polymers. In Yampolskii, Y., Pinnau, I., Freeman, B., Materials Science of Membranes for Gas and Vapor Separation, England, John Wiley & Sons Ltd. pp. 1-47 20. Tsuji, H., Okino, R., Daimon, H., Fujie, K., 2006, Water vapor permeability of poly(lactide)s: effects of molecular characteristics and crystallinity. Journal of Applied Polymer Science, 99, 2245-2252. 21. Shogren, R., 1997, Water vapor permeability of biodegradable polymers. Journal of Environmental Polymer Degradation, 5, 91-95.-
local.type.refereedNon-Refereed-
local.type.specifiedProceedings Paper-
local.classdsPublValOverrule/author_version_not_expected-
local.bibliographicCitation.btitle28th IAPRI Symposium on Packaging 2017: Unlocking the full potential of packaging across the value-chain-
item.accessRightsRestricted Access-
item.fullcitationKNOCKAERT, Griet; Houben, Levy; ADONS, Dimitri; CARLEER, Robert; YPERMAN, Jan; PEETERS, Roos & BUNTINX, Mieke (2017) Thickness and Gas Permeability Properties of PLA and PLA/EVOH/PLA before and after Thermoforming into Variable Tray Types.. In: Wyser, Yves; Martine, Eric (Ed.). 28th IAPRI Symposium on Packaging 2017: Unlocking the full potential of packaging across the value-chain, School of Engineering and Management Vaud (HEIG-VD),p. 460-476.-
item.fulltextWith Fulltext-
item.contributorKNOCKAERT, Griet-
item.contributorHouben, Levy-
item.contributorADONS, Dimitri-
item.contributorCARLEER, Robert-
item.contributorYPERMAN, Jan-
item.contributorPEETERS, Roos-
item.contributorBUNTINX, Mieke-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
170509-12 28th_IAPRI_PAPER_OPTITHE_Ox2_Buntinx et al.pdf
  Restricted Access
Published version892.66 kBAdobe PDFView/Open    Request a copy
Show simple item record

Page view(s)

42
checked on Jul 15, 2022

Download(s)

10
checked on Jul 15, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.