Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24327
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBERVOETS, Liene-
dc.contributor.authorMASSA, Guy-
dc.contributor.authorGUEDENS, Wanda-
dc.contributor.authorLOUIS, Evelyne-
dc.contributor.authorNOBEN, Jean-Paul-
dc.contributor.authorADRIAENSENS, Peter-
dc.date.accessioned2017-08-31T08:28:05Z-
dc.date.available2017-08-31T08:28:05Z-
dc.date.issued2017-
dc.identifier.citationDIABETOLOGY & METABOLIC SYNDROME, 9, p. 1-8 (Art N° 48)-
dc.identifier.issn1758-5996-
dc.identifier.urihttp://hdl.handle.net/1942/24327-
dc.description.abstractBackground: Type 1 diabetes mellitus (T1DM) is one of the most common pediatric diseases and its incidence is rising in many countries. Recently, it has been shown that metabolites other than glucose play an important role in insulin deficiency and the development of diabetes. The aim of our study was to look for discriminating variation in the concentrations of small-molecule metabolites in the plasma of T1DM children as compared to non-diabetic matched controls using proton nuclear magnetic resonance (H-1-NMR)-based metabolomics. Methods: A cross-sectional study was set-up to examine the metabolic profile in fasting plasma samples from seven children with poorly controlled T1DM and seven non-diabetic controls aged 8-18 years, and matched for gender, age and BMI-SDS. The obtained plasma H-1-NMR spectra were rationally divided into 110 integration regions, representing the metabolic phenotype. These integration regions reflect the relative metabolite concentrations and were used as statistical variables to construct (train) a classification model in discriminating between T1DM patients and controls. Results: The total amount of variation explained by the model between the groups is 81.0% [(RY)-Y-2(cum)] and within the groups is 75.8% [(RX)-X-2(cum)]. The predictive ability of the model [Q(2)(cum)] obtained by cross-validation is 50.7%, indicating that the discrimination between the groups on the basis of the metabolic phenotype is valid. Besides the expected higher concentration of glucose, the relative concentrations of lipids (triglycerides, phospholipids and cholinated phospholipids) are clearly lower in the plasma of T1DM patients as compared to controls. Also the concentrations of the amino acids serine, tryptophan and cysteine are slightly decreased. Conclusions: The present study demonstrates that metabolic profiling of plasma by H-1-NMR spectroscopy allows to discriminate between T1DM patients and controls. The metabolites that significantly differ between both groups might point to disturbances in biochemical pathways including (1) choline deficiency, (2) increased gluconeogenesis, and (3) glomerular hyperfiltration. Although the sample size of this study is still somewhat limited and a validation should be performed, the proof of principle looks promising and justifies a deeper investigation of the diagnostic possibilities of H-1-NMR metabolomics in follow-up studies.-
dc.description.sponsorshipThis study is part of the 'Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa', supported by the foundation Limburg Sterk Merk, province of Limburg, Flemish government, Hasselt University, Ziekenhuis Oost Limburg and Jessa Hospital. We also thank the Research Foundation Flanders for their support via the MULTIMAR project and G. Reekmans for his assistance in the 1H-NMR analysis of plasma samples.-
dc.language.isoen-
dc.publisherBIOMED CENTRAL LTD-
dc.rights© The Author(s) 2017-
dc.subject.other1H-NMR spectroscopy; metabolomics; type 1 diabetes; pediatrics-
dc.subject.otherH-1-NMR spectroscopy; Metabolomics; Type 1 diabetes; Pediatrics-
dc.titleMetabolic profiling of type 1 diabetes mellitus in children and adolescents: a case-control study-
dc.typeJournal Contribution-
dc.identifier.epage8-
dc.identifier.spage1-
dc.identifier.volume9-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notes[Bervoets, Liene; Massa, Guy; Louis, Evelyne] Hasselt Univ, Fac Med & Life Sci, Martelarenlaan 42, B-3500 Hasselt, Belgium. [Massa, Guy] Jessa Hosp, Dept Pediat, Stadsomvaart 11, B-3500 Hasselt, Belgium. [Guedens, Wanda; Adriaensens, Peter] Hasselt Univ, Inst Mat Res, Appl & Analyt Chem, Biomol Design Grp, Agoralaan 1 Bldg D, B-3590 Diepenbeek, Belgium. [Noben, Jean-Paul] Hasselt Univ, Biomed Res Inst, Agoralaan 1 Bldg C, B-3590 Diepenbeek, Belgium. [Adriaensens, Peter] Inst Mat Res, Appl & Analyt Chem, Agoralaan 1 Bldg D, B-3590 Diepenbeek, Belgium.-
local.publisher.placeLONDON-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr48-
local.classdsPublValOverrule/author_version_not_expected-
dc.identifier.doi10.1186/s13098-017-0246-9-
dc.identifier.isi000404138700001-
item.fullcitationBERVOETS, Liene; MASSA, Guy; GUEDENS, Wanda; LOUIS, Evelyne; NOBEN, Jean-Paul & ADRIAENSENS, Peter (2017) Metabolic profiling of type 1 diabetes mellitus in children and adolescents: a case-control study. In: DIABETOLOGY & METABOLIC SYNDROME, 9, p. 1-8 (Art N° 48).-
item.accessRightsOpen Access-
item.contributorBERVOETS, Liene-
item.contributorMASSA, Guy-
item.contributorGUEDENS, Wanda-
item.contributorLOUIS, Evelyne-
item.contributorNOBEN, Jean-Paul-
item.contributorADRIAENSENS, Peter-
item.fulltextWith Fulltext-
item.validationecoom 2018-
crisitem.journal.eissn1758-5996-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
bervoets 1.pdfPublished version1.02 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

7
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

31
checked on Apr 14, 2024

Page view(s)

70
checked on Sep 7, 2022

Download(s)

102
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.