Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2448
Title: The size of the intrinsic group of a multiplier Hopf algebra
Authors: DELVAUX, Lydia 
Issue Date: 2003
Publisher: MARCEL DEKKER INC
Source: COMMUNICATIONS IN ALGEBRA, 31(3). p. 1499-1514
Abstract: In the theory of Hopf algebras, grouplike elements are well studied. We argue that this notion is too restrictive when dealing with multiplier Hopf algebras. We introduce the "intrinsic" group, situated in the multiplier algebra of the multiplier Hopf algebra. When dealing with an algebraic quantum group A, the intrinsic group of the dual (A) over cap characterizes a special class of automorphisms on A. For multiplier Hopf algebras which are paired in the sense of Drabant and Van Daele. (Drabant, B., Van Daele; A. Pairing and quantum double for multiplier Hopf algebras. (200 1). Algebras and Representation Theory 4:109-132), we prove that the intrinsic group characterizes the semi-invariants of the action associated to the pairing.
Notes: LUC, Dept Math, B-3590 Diepenbeek, Belgium.Delvaux, L, LUC, Dept Math, Universiteitslaan, B-3590 Diepenbeek, Belgium.
Keywords: grouplike elements; semi-invariants
Document URI: http://hdl.handle.net/1942/2448
ISSN: 0092-7872
e-ISSN: 1532-4125
DOI: 10.1081/AGB-120017785
ISI #: 000182407100026
Category: A1
Type: Journal Contribution
Validations: ecoom 2004
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

5
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

4
checked on May 13, 2022

Page view(s)

60
checked on May 19, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.