Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2450
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBULACU, Daniel-
dc.contributor.authorNAUWELAERTS, Erna-
dc.date.accessioned2007-11-14T10:41:47Z-
dc.date.available2007-11-14T10:41:47Z-
dc.date.issued2003-
dc.identifier.citationCOMMUNICATIONS IN ALGEBRA, 31(2). p. 657-672-
dc.identifier.issn0092-7872-
dc.identifier.urihttp://hdl.handle.net/1942/2450-
dc.description.abstractFollowing brinfeld (Drinfeld, V. G. (1990a). Quasi-Hopf algebras. Leningrad Math. J. 1:1419-1457) a quasi-Hopf algebra has, by definition, its antipode bijective. In this note, we will prove that for a quasitriangular quasi-Hopf algebra with an R-matrix R, this condition is unnecessary and also the condition of invertibility of R. Finally, we will give a characterization for a ribbon quasi-Hopf algebra. This characterization has already been given in Altschuler and Coste (Altschuler, D., Coste, A. (1992). Quasi-quantum groups, knots, three-manifolds and topological field theory. Comm. Math. Phys. 150:83-107.), but with an additional condition. We will prove that this condition is unnecessary.-
dc.language.isoen-
dc.publisherMARCEL DEKKER INC-
dc.subject.otherquasi-Hopf algebra; R-matrix; antipode; ribbon element-
dc.titleQuasitriangular and ribbon quasi-Hopf algebras-
dc.typeJournal Contribution-
dc.identifier.epage672-
dc.identifier.issue2-
dc.identifier.spage657-
dc.identifier.volume31-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Bucharest, Fac Math, RO-70109 Bucharest 1, Romania. Limburgs Univ Ctr, Diepenbeek, Belgium.Bulacu, D, Univ Bucharest, Fac Math, Str Acad 14, RO-70109 Bucharest 1, Romania.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1081/AGB-120017337-
dc.identifier.isi000182406900008-
item.accessRightsClosed Access-
item.contributorBULACU, Daniel-
item.contributorNAUWELAERTS, Erna-
item.validationecoom 2004-
item.fullcitationBULACU, Daniel & NAUWELAERTS, Erna (2003) Quasitriangular and ribbon quasi-Hopf algebras. In: COMMUNICATIONS IN ALGEBRA, 31(2). p. 657-672.-
item.fulltextNo Fulltext-
crisitem.journal.issn0092-7872-
crisitem.journal.eissn1532-4125-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.