Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2450
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBULACU, Daniel-
dc.contributor.authorNAUWELAERTS, Erna-
dc.date.accessioned2007-11-14T10:41:47Z-
dc.date.available2007-11-14T10:41:47Z-
dc.date.issued2003-
dc.identifier.citationCOMMUNICATIONS IN ALGEBRA, 31(2). p. 657-672-
dc.identifier.issn0092-7872-
dc.identifier.urihttp://hdl.handle.net/1942/2450-
dc.description.abstractFollowing brinfeld (Drinfeld, V. G. (1990a). Quasi-Hopf algebras. Leningrad Math. J. 1:1419-1457) a quasi-Hopf algebra has, by definition, its antipode bijective. In this note, we will prove that for a quasitriangular quasi-Hopf algebra with an R-matrix R, this condition is unnecessary and also the condition of invertibility of R. Finally, we will give a characterization for a ribbon quasi-Hopf algebra. This characterization has already been given in Altschuler and Coste (Altschuler, D., Coste, A. (1992). Quasi-quantum groups, knots, three-manifolds and topological field theory. Comm. Math. Phys. 150:83-107.), but with an additional condition. We will prove that this condition is unnecessary.-
dc.language.isoen-
dc.publisherMARCEL DEKKER INC-
dc.subject.otherquasi-Hopf algebra; R-matrix; antipode; ribbon element-
dc.titleQuasitriangular and ribbon quasi-Hopf algebras-
dc.typeJournal Contribution-
dc.identifier.epage672-
dc.identifier.issue2-
dc.identifier.spage657-
dc.identifier.volume31-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Bucharest, Fac Math, RO-70109 Bucharest 1, Romania. Limburgs Univ Ctr, Diepenbeek, Belgium.Bulacu, D, Univ Bucharest, Fac Math, Str Acad 14, RO-70109 Bucharest 1, Romania.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1081/AGB-120017337-
dc.identifier.isi000182406900008-
item.contributorBULACU, Daniel-
item.contributorNAUWELAERTS, Erna-
item.validationecoom 2004-
item.accessRightsClosed Access-
item.fullcitationBULACU, Daniel & NAUWELAERTS, Erna (2003) Quasitriangular and ribbon quasi-Hopf algebras. In: COMMUNICATIONS IN ALGEBRA, 31(2). p. 657-672.-
item.fulltextNo Fulltext-
crisitem.journal.issn0092-7872-
crisitem.journal.eissn1532-4125-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

19
checked on Jan 17, 2026

WEB OF SCIENCETM
Citations

15
checked on Jan 13, 2026

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.