Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2455
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFontich, E-
dc.contributor.authorBONCKAERT, Patrick-
dc.date.accessioned2007-11-14T10:46:22Z-
dc.date.available2007-11-14T10:46:22Z-
dc.date.issued2003-
dc.identifier.citationJOURNAL OF DIFFERENTIAL EQUATIONS, 191(2). p. 490-517-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/2455-
dc.description.abstractWe consider families of maps depending on a parameter epsilon such that for epsilon = 0 the map becomes a product of linear rotations in R2m+n and for epsilon not equal 0 the map is weakly attracting in the product of the rotation planes and weakly repelling in some complementary subspace. We prove that the unstable manifold converges to the complementary subspace in the C-r topology, the case r = infinity included. We consider both the local and the global manifolds. For that we prove some results on families of maps near a norm one linear map, which are of independent interest. (C) 2003 Elsevier Science (USA). All rights reserved.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subject.otherperturbations of rotations; invariant manifolds; bifurcations-
dc.titleInvariant manifolds of maps close to a product of rotations: close to the rotation axis-
dc.typeJournal Contribution-
dc.identifier.epage517-
dc.identifier.issue2-
dc.identifier.spage490-
dc.identifier.volume191-
local.format.pages28-
local.bibliographicCitation.jcatA1-
dc.description.notesDept Matemat Aplicada & Anal, Barcelona 08007, Spain. Limburgs Univ Ctr, B-3590 Diepenbeek, Belgium.Fontich, E, Dept Matemat Aplicada & Anal, Gran Via Corts Catalanes 585, Barcelona 08007, Spain.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/S0022-0396(03)00025-1-
dc.identifier.isi000183424000008-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
item.contributorBONCKAERT, Patrick-
item.contributorFontich, E-
item.fullcitationFontich, E & BONCKAERT, Patrick (2003) Invariant manifolds of maps close to a product of rotations: close to the rotation axis. In: JOURNAL OF DIFFERENTIAL EQUATIONS, 191(2). p. 490-517.-
item.validationecoom 2004-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

5
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

6
checked on Jun 29, 2022

Page view(s)

46
checked on Jul 3, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.