Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2474
Title: Solvability of the master equation for dichotomous flow
Authors: BALAKRISHNAN, Venkataraman 
VAN DEN BROECK, Christian 
Issue Date: 2002
Publisher: AMERICAN PHYSICAL SOC
Source: PHYSICAL REVIEW E, 65(1)
Abstract: We consider the one-dimensional stochastic flow (x) over dot = f(x) + g(x)xi(t), where xi(t) is a dichotomous Markov noise, and use a simple procedure to identify the conditions under which the integro-differential equation satisfied by the total probability density P(x,t) of the driven variable can be reduced to a differential equation of finite order. This generalizes the enumeration of the "solvable" cases.
Notes: Limburgs Univ Ctr, B-3590 Diepenbeek, Belgium. Indian Inst Technol, Dept Phys, Madras 600036, Chennai, India.Balakrishnan, V, Limburgs Univ Ctr, Univ Campus, B-3590 Diepenbeek, Belgium.
Document URI: http://hdl.handle.net/1942/2474
ISSN: 1063-651X
DOI: 10.1103/PhysRevE.65.012101
ISI #: 000173407400052
Category: A1
Type: Journal Contribution
Validations: ecoom 2003
Appears in Collections:Research publications

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.