Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2474
Title: Solvability of the master equation for dichotomous flow
Authors: BALAKRISHNAN, Venkataraman 
VAN DEN BROECK, Christian 
Issue Date: 2002
Publisher: AMERICAN PHYSICAL SOC
Source: PHYSICAL REVIEW E, 65(1)
Abstract: We consider the one-dimensional stochastic flow (x) over dot = f(x) + g(x)xi(t), where xi(t) is a dichotomous Markov noise, and use a simple procedure to identify the conditions under which the integro-differential equation satisfied by the total probability density P(x,t) of the driven variable can be reduced to a differential equation of finite order. This generalizes the enumeration of the "solvable" cases.
Notes: Limburgs Univ Ctr, B-3590 Diepenbeek, Belgium. Indian Inst Technol, Dept Phys, Madras 600036, Chennai, India.Balakrishnan, V, Limburgs Univ Ctr, Univ Campus, B-3590 Diepenbeek, Belgium.
Document URI: http://hdl.handle.net/1942/2474
ISSN: 1063-651X
DOI: 10.1103/PhysRevE.65.012101
ISI #: 000173407400052
Category: A1
Type: Journal Contribution
Validations: ecoom 2003
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

10
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

8
checked on May 29, 2022

Page view(s)

50
checked on May 28, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.