Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2485
Full metadata record
DC FieldValueLanguage
dc.contributor.authorADRIAENSENS, Peter-
dc.contributor.authorSTORME, Liesbet-
dc.contributor.authorCARLEER, Robert-
dc.contributor.authorD'HAEN, Jan-
dc.contributor.authorGELAN, Jan-
dc.contributor.authorLitvinov, VM-
dc.contributor.authorMarissen, R-
dc.contributor.authorCrevecoeur, J-
dc.date.accessioned2007-11-15T07:57:58Z-
dc.date.available2007-11-15T07:57:58Z-
dc.date.issued2002-
dc.identifier.citationMACROMOLECULES, 35(1). p. 135-140-
dc.identifier.issn0024-9297-
dc.identifier.urihttp://hdl.handle.net/1942/2485-
dc.description.abstractThe fracture behavior of two different types of extruded polyamide 6 (PA6)/maleic anhydride grafted ethylene-propylene (EPM-g-MA) blends is examined by magnetic resonance imaging (MRI). TEM micrographs demonstrate a clear difference in morphology: where one blend type contains pure rubber particles dispersed in the PA6 matrix, the other type contains PA6 occlusions within the rubber particles and is significantly more tough. MRI experiments on notched specimens of both blend types under critical load reveal a gradual increase of rubber cavitation toward the crack tip which can be quantified on the basis of the localized proton spin density. A clear relation is observed between the toughness and the dimensions of the plastic zone: the toughest blend has a significant more extended plastic zone ahead of the crack tip. The enhanced toughness of the blends with occlusions can be attributed to a more pronounced delocalization of energy, which is suggested to result from a different deformation mechanism in which the load bearing capacity of the rubbery chains plays an important role.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleNMR imaging study of stress-induced material response in rubber modified polyamide 6-
dc.typeJournal Contribution-
dc.identifier.epage140-
dc.identifier.issue1-
dc.identifier.spage135-
dc.identifier.volume35-
local.format.pages6-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Limburg, Mat Res Inst IMO, Dept SBG, B-3590 Diepenbeek, Belgium. Delft Univ Technol, Fac Mech Engn, NL-2628 CD Delft, Netherlands. DSM Res & Patents, NL-6160 MD Geleen, Netherlands.Gelan, J, Univ Limburg, Mat Res Inst IMO, Dept SBG, Univ Campus,Bldg D, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1021/ma0113273-
dc.identifier.isi000173023200019-
item.validationecoom 2003-
item.accessRightsClosed Access-
item.fullcitationADRIAENSENS, Peter; STORME, Liesbet; CARLEER, Robert; D'HAEN, Jan; GELAN, Jan; Litvinov, VM; Marissen, R & Crevecoeur, J (2002) NMR imaging study of stress-induced material response in rubber modified polyamide 6. In: MACROMOLECULES, 35(1). p. 135-140.-
item.fulltextNo Fulltext-
item.contributorADRIAENSENS, Peter-
item.contributorSTORME, Liesbet-
item.contributorCARLEER, Robert-
item.contributorD'HAEN, Jan-
item.contributorGELAN, Jan-
item.contributorLitvinov, VM-
item.contributorMarissen, R-
item.contributorCrevecoeur, J-
crisitem.journal.issn0024-9297-
crisitem.journal.eissn1520-5835-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

17
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

17
checked on Apr 22, 2024

Page view(s)

94
checked on Apr 21, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.